Diamond detectors in the HADES-experiment

S. Spies¹, J. Pietraszko², W. Koenig², M. Träger², M. Kis², A. Rost³ and T. Galatyuk³ for the HADES Collaboration ¹Goethe University Frankfurt; ²GSI Helmholtzzentrum für Schwerionenforschung; ³Technical University Darmstadt

Performance and calibration of the single crystal

scCVD reaction time detector of the

HADES-experiment

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 654168

Outline

- The setup of the HADES-experiment
 - The reaction time (START) detector
 - The event quality (VETO) detector
- Time calibration
 - Preliminary channel-wise calibration
 - Precise final calibration using reconstructed particle tracks
- Summary and Outlook

Detector Setup

Setup and Layout of START and VETO detector

High Acceptance Di Electron Spectrometer

The HADES Beamline

- START detector 5,27cm in front of target
- VETO detector 54,68cm behind target

The START Detector

- Double-sided multi-strip scCVD Diamond sensor for HI
- 16 Strips on each side with widths of 200μm and gaps of 90μm
- \blacktriangleright 60µm thick detector \rightarrow high field inhomogeneity

The START Detector

- Total active area 4.7mm x 4.7mm, mounted on a holder allowing for movement in x- and y-direction
- ➤ Read out by one multihit-TDC per channel with Δt ≈ 17ps and up to 10MHz readout rate
- → After full calibration $\Delta t \approx 50$ possible

The VETO Detector

- 8mm x 8mm pCVD Diamond detector with 8 channels
- Necessary to discard problematic events (e.g. Pile-Up events)
- Used also as reference to calibrate START detector

Time Calibration

Calibrating START and VETO detector

Rough channel-wise calibration

- Speed of electric signals ≈ 2/3 c
 = 200,000 km/s = 0.2 mm/ps
- Aim: Time precision of 50ps order of magnitude
- Problem: Already few mm difference in cable length lead to noticeable differences in signal delay

- Solution: Define individual offsets for each channel to compensate differences in signal propagation time
- Define global offset so that absolute START Times are equal 0

The Method

- Done for all 16 channels of both sides of the START detector individually
- Very first step of timing calibration in the experiment

Before first calibration step

After first calibration step

Time Calibration

Calibrating START Times with negative Pions

Excursion: Particle Identification

Excursion: Particle Identification

 \blacktriangleright Above 300 MeV/c almost purely π^{-} on negative charge side of the spectrum

The Method

- Fill spectrum with difference between ToF_{calc} and ToF_{meas}
- Fit Gaussian and adjust START Offsets so that mean is 0
- Done individually for each START channel and bunches of roughly 500.000 events (≈ 1 minute beamtime)

Before second calibration step

After second calibration step

Summary and Outlook

- \blacktriangleright At the current stage of calibration $\Delta t \approx 150 \text{ ps}$
 - RPC, ToF, MDCs etc. not fully calibrated
 - Momentum and Time of Flight precision will improve
- After final calibration of Au+Au beamtime from 2012
 Δt ≈ 50ps precision achieved
- The future: Ultra fast silicon detectors (UFSD) for HADES reaction time measurement?
 - Talk tomorrow noon (10.12.2019 12:00) by Jerzy Pietraszko "Performance of UFSD Strip sensors for timing applications"

