Performance of UFSD for HADES Test on 04-10 Nov 2019

I) UFSD aka LGAD – operation principle
II) Setup Description Used in at COSY in Jülich
III) Running Conditions
IV) Selected Online Results
V) Sumary & Outlook

UFSD HADES team

- J. Pietraszko, Ch. Wendisch, W. Koenig
- M. Träger, M. Kis GSI / Det. Lab
- M. Traxler, S. Linev GSI / HADES

GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany

J. Michel, M. Koziel

Institut für Kernphysik, Goethe-Universität, 60438 Frankfurt, Germany

- A. Rost, T. Galatyuk, W. Krueger TU Darmstadt / HADES Technische Universität Darmstadt, 64289 Darmstadt, Germany
- K. Sumara Jagiellonian Uni / HADES Smoluchowski Institute of Physics, Jagiellonian University of Cracow, 30-059 Kraków, Poland
- S.Moneta

Universita di Pisa, 56126 Pisa, Italy

A.Schemm

IMT Atlantique, Campus de Nantes, 44307 Nantes, France

UFSD team at INFN & FBK

N. Cartiglia, V. Sola

INFN, Sezione di Torino, via P. Giuria 1, 10125, Torino, Italy

M. Ferrero

Università del Piemonte Orientale, Via Donegani 2, 28100, Novara, Italy/ INFN, Sezione di Torino, via P. Giuria 1, 10125, Torino, Italy

M. Boscardin, F. Ficorella, G. Paternoster, Fondazione Bruno Kessler, via Sommarive 18, 38123, Povo (TN), Italy TIFPA-INFN, via Sommarive 18, 38123, Povo (TN), Italy

UFSD Principle of Operation

- as doping Boron, Galion, Carbon can be used, 10**16/cm3
- amplification up to x20 due to increased electric field
- expected/demonstrated time precision: 30 ps.

Timing layers, 4D- and 5D-tracking, Cartiglia, N. INFN, Torino - Berlin 12/06/18

Design optimization of ultra-fast silicon detectors – Cartiglia, N. et al. Nucl. Instrum. Meth. A796 (2015) 141-148 First FBK production of 50 μm ultra-fast silicon detectors – V. Sola et al. Nucl. Instrum. Meth. A924 (2019) Beam test results of a 16 ps timing system based on UFSD - Cartiglia, N. et al. Nucl.Instrum.Meth. A850 (2017) 83-88

UFSD Radiation Hardness

- At very high fluences the concentration of acceptors in the p+ implant becomes greatly reduced
- Irradiation creates acceptors in the bulk material which are used for multiplication inside the sensor
- The multiplication taking place in the bulk material shows faster induced current rise -> even better timing !
- The overall gain can be controlled by the bias voltage
- Expected time precision: 30 ps up to 6x10¹⁵ cm⁻²

Radiation Hardness of Thin Low Gain Avalanche Detectors - Kramberger, G. et al. Nucl. Instrum. Meth. A891 (2018) 68-77

Setup: 2 UFSD sensors, each connected to NINO and Padiwa boards Beam: p@1.92 GeV kinetic energy from COSY

J.Pietraszko, 8th ADAMAS Workshop, GSI, Darmstadt, 9-10.12.2019

Setup: Two UFSD sensors, each connected to NINO and Padiwa boards

2 amplification stages close to the sensor

J. Pietraszko et al. Nucl. Instrum. Meth. A 618 (2010) 121-123

FBK UFSD detectors tested at COSY in Juelich, 5mm x 4.5 mm

- 500 μm thickness, 50μm active sensor thickness, 5mm x 4.5 mm,
- 30 strips on each sensor, 16 connected to the FEE, 140 μm pitch
- W15_1A and W3 sensor types

Setup: Two UFSD sensors, each connected to NINO and Padiwa boards

Amplifications at individual stages

Best performance at thresholds at 5mV !

where *S* is the signal amplitude, t_r the signal rise time, *N* the noise, and V_{th} is the comparator threshold used to set the time of arrival of the particle ($V_{th} \sim 10*N$).

N. Cartiglia, et al., Design optimization of ultra-fast silicon detectors, NIMA 796 (2015)141-148

The most important parameters for good time precision:

- Short rise time
- Low noise

UFSD_W3_@300 V after x20 x 30 (in front of Nino)

The highest slope is at the very beginning of the signal

- → Best timing at very low thresholds, as close as possible to the noise
- \rightarrow This we see in the test data

Best performance at 5mV threshold – consequences

 \rightarrow a huge number of signals with very low amplitude (ToT)

The origin of signals with an amplitude close to 5mV

- 1. Crosstalk is Sensor, Amplifiers and in Discriminator
- 2. "Dead area" between strips of the detector, low amplitude signals
 - Current gap: 50 μ m \rightarrow fill factor of 75 %.
 - Goal: <10 μ m \rightarrow fill factor of 95 %.

Nicolo Cartiglia, 4D-Tracking, Berlin 2018

HAD

HADES

Performance of UFSD for HADES Running conditions

😑 Central Trigger System						0		17093	17093	17093	17093	
- Status overview								0	0	6642	7526	
Counter Trigger asserted 1563540 Trigger rising edges 15635400 Trigger accepted 3846960		Counts 1563540855 clks	Rate 100000	Edges		2		0	0	7223	7907	
		1563540855 edges 57.70 KHz 76 384696050 events 11.42 KHz 76 667		8000 ACCEPTED				0	0	7703	8903	
Last Idle Time		8670 ns	1 50000 4 40000 2 30000	f la	ŧ.	4		0	0	7617	8397	
Total Dead Time		4190 ns 45620899 ns	238.66 KHZ 20000 4.6% 10000		t,	5		0	0	8382	8082	
Throttle		Limit Trigger Rate to	-180 -1	60 -140 -120 -100 -80 -60 -40 - Time since last update [s]	20 0	6		0	0	8692	6965	
Full Stop			Ignore all events Click on the image to switch between short and long plotting intervals			7		0	0	267	8154	
Export CTS Configuration as TrbCmd script as shell script						8		0	0	8825	7008	
 Trigger Cha # Enable 	Trg. Cond.	Assignment	TrbNet Type	Asserted	Edges	9		8588	7620	0	0	
0	R. Edge 🖌	Ext. Logic - CBM	0x1_physics_trigger	0.00 cnt/s	0.00 Hz	10		8248	7306	0	0	
1	R. Edge 🗸	Periodical Pulser 0	0xd_tdc_calibration_trigger V	10.00 Kcnt/s	10.00 KHz	11		7957	0	0	0	
2	R. Edge 🗸	Periodical Pulser 1	0x1_physics_trigger	44.49 cnt/s	44.49 Hz	12		7814	7389	0	29510177	
3	R. Edge V	Periodical Pulser 2	0x1_physics_trigger	0.00 cnt/s	0.00 Hz	13		7418	7310	0	0	
4 U 5 🔽	R. Edge ¥	AddOn Multiplexer 0	0x1_physics_trigger	167 15 K cnt/s	0.00 HZ	14		7441	7394	651	0	
6	R. Edge 🗸	AddOn Multiplexer 1	0x1_physics_trigger	11.48 Mcnt/s	25.01 KHz	15		6857	7786	0	0	
7	R. Edge 🗸	AddOn Multiplexer 2	0x1_physics_trigger 🗸	100.00 Mcnt/s	0.00 Hz	16		6140	7163	5086778	0	
8	R. Edge 🗸	AddOn Multiplexer 3	0x1_physics_trigger	0.00 cnt/s	0.00 Hz	17	5	0	17908	0	0	
9	R. Edge 🗸	Coincidence Module 0	0x1_physics_trigger v	100.00 Mcnt/s	0.00 Hz	18		0	14139	0	0	

Rates: 7-8 kHz / strip

07.11.2019 15:18, back to 250V / 300V,

Thresholds:

NINO: 0xe - global, 0xd loc(nino),

padiwa (0x7b95 + 3000) + 150 mV in padiwa,

LV increased to 1.6V,

High intens. up 20kHz/strip/s

NINO discriminator, time precision with walk corrections

PADIWA discriminator, time precision with walk corrections

Sigma

1

0

2

 0.1236 ± 0.0000

3 Tdiff[ns]

Sigma

0

2

1000

 $\frac{0}{2}$

 0.1433 ± 0.0000

_3___4 Tdiff[ns]

1500 1000

500

0 2

Example Results PADIWA with walk correction: 140ps / 1.4 = 100 ps

- \rightarrow with contribution from small ToT
- \rightarrow relatively high thresholds

 \rightarrow Charge sharing in sensor clearly visible

NINO discriminator, time precision with walk corrections - Local Maxima from Clusters

PADIWA discriminator, time precision with walk corrections – Local Maxima from Clusters

Example Results

PADIWA with walk correction
and cluster finder
→ only local maxima

112ps / 1.4 = 80 ps

- → reduced contribution from small ToT
- ightarrow relatively high thresholds

PADIWA discriminator, time precision with walk corrections – Local Maxima from Clusters

NINO with walk correction and cluster finder, local maxima Time precision:

80ps / 1.4 = 56 ps

PADIWA with walk correction and cluster finder, local maxima Time precision:

<u>110ps / 1.4 = 80 ps</u>

Summary and Outlook

- → Very good timing performance has been demonstated, time precision close to 50ps for NINO and 80ps for PADIWA
- \rightarrow Charge sharing in sensor observed
- → Better time performance using only local maxima hits: NINO (57ps→55ps), PADIWA (100ps → 80ps)
- \rightarrow Operation in air, without the need for cooling

Next Steps

- → New sensors, fill factor almost 100%, cluster size?
- ightarrow Checking the behaviour at high beam intensities, MHz/ch
- \rightarrow New PCBs with more channels, 64 channel version ready for tests.

