

Diamond detectors characterization for ²³⁵U fission fragments detection at LOHENGRIN

ML Gallin-Martel LPSC Grenoble France

Collaboration LPSC / ILL / Krakow / INFN Milano

mlgallin@lpsc.in2p3.fr

- Context : induced fission of Uranium-235
- > Experimental apparatus : tests of diamond sensors at LOHENGRIN for fission fragment detection
- Spectroscopic measurement
 - Alpha and tritons data analysis
 - Fission Fragment (FF) data analysis
 - Observation of the Pulse Heigh Defect : alpha and triton versus FF data analysis
- Timing resolution with FF
- Conclusion

Context : induced fission of Uranium-235

> Experimental apparatus : tests of diamond sensors at LOHENGRIN for fission fragment detection

Spectroscopic measurement

- Alpha and tritons data analysis
- Fission Fragment (FF) data analysis
- Observation of the Pulse Heigh Defect : alpha and triton versus FF data analysis
- Timing resolution with FF
- Conclusion

Why it is important to study nuclear fission ?

- ➢ key data for nuclear reactor studies,
 - =>linked to the estimation of decay heat, criticality or radiotoxicity of spentfuel
- important for the understanding of the fission process itself.

Context : induced fission of Uranium-235

> Experimental apparatus : tests of diamond sensors at LOHENGRIN for fission fragment detection

- > Spectroscopic measurement
 - Alpha and tritons data analysis
 - Fission Fragment (FF) data analysis
 - Observation of the Pulse Heigh Defect : alpha and triton versus FF data analysis
- Timing resolution with FF
- Conclusion

Experimental apparatus

Experimental apparatus

9th December - 10th December 2019

Comparison of LPSC and Krakow diamond

sCVD diamond detectors sCVD diamond detectors 517 um thickness **50um** thickness (4,5x4,5mm²) (2mm in diameter) VS LPSC Krakow 2 mm in diameter 2 mm in diameter

Context : induced fission of Uranium-235

> Experimental apparatus : tests of diamond sensors at LOHENGRIN for fission fragment detection

Spectroscopic measurement

- o Alpha and tritons data analysis
- Fission Fragment (FF) data analysis
- Observation of the Pulse Heigh Defect : alpha and triton versus FF data analysis
- > Timing resolution with FF
- Conclusion

Alpha and triton data analysis

왙 0.14 Constant 0.1189 ± 0.1801 . 8 _{0.12} 357.6 ± 2.9 Mean 2.574 ± 2.551 Sigma sCVD diamond detectors 0.1 α 4.75 MeV 0.08 $\frac{\sigma}{\mu}$ =0.7 % 500um thickness 0.06 (2mm in diameter) 0.04 0.02 0 300 310 320 330 340 350 360 370 380 390 400 ADC Channels Constant 0.2718 ± 0.3423 b 0.25 204.2 ± 1.5 1.437 ± 1.073 Sigma 0.2 0.15 T 2.7 MeV $\frac{\sigma}{\mu}$ =0.7 % 0.1 0.05 0 190 195 200 205 210 215 ADC Channels sCVD diamond detectors Constant 0.2847 ± 0.3864 UNO 0.25 α 4.75 MeV Mean 260 ± 1.4 50um thickness Sigma 1.283 ± 1.108 0.2 (2mm in diameter) 0.15 $\frac{\sigma}{\mu}$ = 0.5% 0.1 0.05 ADC = 55.3 x E -3.4 255 260 265 270 275 ADC Channels ∯ 0.45 Constant 0.4149 ± 0.5365 0.4 $\frac{\sigma}{\mu} = 0.6\%$ Coul Mear 146 ± 1.0 0.35 0.9147 ± 0.7181 Sigma 45° 0.3 0.4034 ± 0.5269 Constant - = 0.6%0.25 Mean 145.9 ± 1.0 T 2.7 MeV 45° 0.2 Sigma 0.9218 ± 0.7288 0.15 Constant 0.336 ± 0.490 0.1 0 = 0.7% Mear 145.1 ± 1.2 Sigma 1.056 ± 1.069 0.05 2 mm in diameter 135 140 145 150 155 160 ADC Channels

- > Context : induced fission of Uranium-235
- > Experimental apparatus : tests of diamond sensors at LOHENGRIN for fission fragment detection
- > Spectroscopic measurement
 - Alpha and tritons data analysis
 - Fission Fragment (FF) data analysis
 - Observation of the Pulse Heigh Defect : alpha and triton versus FF data analysis
- Timing resolution with FF
- Conclusion

Energy resolution analysis with Fission Fragments (FF)

Schematic of the test bench set-up

The displayed spectrum of FFs on PC

- **Context : induced fission of Uranium-235**
- > Experimental apparatus : tests of diamond sensors at LOHENGRIN for fission fragment detection
- > Spectroscopic measurement
 - Alpha and tritons data analysis
 - Fission Fragment (FF) data analysis
 - Observation of the Pulse Heigh Defect : alpha and triton versus FF data analysis
- Timing resolution with FF
- Conclusion

Pulse Height Defect observation

sCVD diamond detectors 50um thickness (2mm in diameter)

α 4.75 MeV

2.7 MeV

Т

Alpha and triton data analysis

$ADC = 55.3 \times E(MeV) - 3.4$

α 4.75 MeV

Alpha and triton data analysis

$ADC = 55.3 \times E(MeV) - 3.4$

=> one should expect that the FF98 peak at the energy of 100 MeV is at ADC = 5527

BUT : observed at the channel 2755 !!!!

50 % of the kinetic energy is not reconstructed:

$ADC = 55.3 \times E(MeV) - 3.4$

=> one should expect that the FF98 peak at the energy of 100 MeV is at ADC = 5527

BUT : observed at the channel 2755 !!!!

50 % of the kinetic energy is not reconstructed: Pulse Height defect !

3000 ADC Channels

searched for optimal combinations of diamond side exposed to FF versus applied bias voltage to diamond.

> An optimum voltage of -450 V corresponds to side 0° and +450 V to side 180° for LPSC = 0.9 V/ μ m.

> An optimum voltage of 200 V for Krakow = 4 V/ μ m.

Diamond detector

LPSC detector

Schematic of the test bench set-up

FF

ML Gallin-Martel, LPSC Grenoble, ADAMAS conference

$ADC = 55.3 \times E(MeV) - 3.4$

=> one should expect that the FF98 peak at the energy of 100 MeV is at ADC = 5527

BUT : observed at the channel 2755 !!!!

50 % of the kinetic energy is not reconstructed: Pulse Height defect !

3000 ADC Channels

Pulse Height Defect observation

sCVD diamond detectors 50um thickness (2mm in diameter)

The Pulse Height Defect (PHD) :

 $\Delta E = E_k - E_{DD}.$

- *E*_{*k*} : The kinetic energy of an incident ion.
- E_{DD} : The energy derived from the measured electric signal.

- ➔ Reasons of the appearance of PHD were investigated mainly for Si detectors in the past
- → PHD already observed for CVD diamonds : O.Beliuskina et al., Eur. Phys. J A (2017) 53: 32 and Y. Sato et al., 2013 EPL 104 22003
- ➔ The main process leading to a pulse-height defect is the incomplete charge collection in the detector.
- → This may arise from various sources, but for heavy ions the main source appears to be the recombination of electron-hole pairs in the plasma bulk produced by the heavily-ionizing particle

Pulse Height Defect analysis

ADC = **P0+P1**xE **P0 and P1** fit parameters

- G1700 A102 A132 A144 Energy (MeV) p1 (ADC/MeV)
- P0 and P1 values can be considered as constant values for light FF (respectively heavy FF)
- a difference of a factor of about ~1.2 (measured on p₁) araised between light FF and heavy FF

The ionic mass A (ionic charge Z) of incident FF influences PHD.

А

- > Context : induced fission of Uranium-235
- > Experimental apparatus : tests of diamond sensors at LOHENGRIN for fission fragment detection
- Spectroscopic measurement
 - Alpha and tritons data analysis
 - Fission Fragment (FF) data analysis
 - Observation of the Pulse Heigh Defect : alpha and triton versus FF data analysis

Timing resolution with FF

Conclusion

Time resolution analysis

Difference of the timing of both surface signals

Time (ns)

Excellent time resolution measured on 90MeV $\frac{98}{40}Zr$!

- Single crystal diamond detector exhibit a good fission fragment peaks separation, a good energy resolution around 1.5% and an excellent time resolution ~9.5 ps
- Single crystal diamond detector can be a good alternative to ionization chamber in detecting fission fragment.
- Single crystal detector is affected by pulse height defect which lead to a loss of almost 50% of the initial signal and this is independent from the thickness but is dependent on the ionic mass A (or ionic charge Z) !

Perspectives

Design of a monolithic diamond ΔE -E telescope

Collaboration LPSC Grenoble, Institut Néel Grenoble , Diamfab Grenoble

DiamFab \rightarrow CVD process of a good quality epitaxial diamond layer with a good-controlled boron doping concentration

- This detector relies commercial diamond substrates.
- On the top side, a few µm-thick metal contact with a stack of highly doped layer (allowing metallic conduction)
- Lightly doped layer will be designed to collect charges induced by the incident particle with a good time resolution.
- On the back side, a second metallic contact will be deposited.

¹²C 200 MeV/u ions Gunzert-Marx 2008

 $\Delta E \sim Q^2/v^2$

Е

N- substrate

280

240

E_T (Channel No.)

360

400

→ Identification and timing measurement of Fission Fragments with the Lohengrin mass spectrometer $90 \text{MeV} \frac{98}{40} Zr$

Acknowledgements

The authors would like to acknowledge the ILL for providing un access to the LOHENGRIN experiment

Dominique Breton from the Laboratoire de l'Accélérateur Linéaire and **Eric Delagnes** from CEA Saclay are thanked for their implication in dedicated software development and technical support of the namely "wavecatcher" data acquisition system.