

Recent Progress in the Growth of Heteroepitaxial Diamond for Detector Applications

Matthias Schreck¹, Michael Mayr¹, Michael Träger³, Mladen Kis³, Patrik Ščajev⁴, Eleni Berdermann³, Stefan Gsell², Martin Fischer², Thomas Roth⁵, Jan Grünert⁵, Wolfgang Freund⁵, Anders Madsen⁵ ¹Universität Augsburg, Institut für Physik, D-86135 Augsburg ²Augsburg Diamond Technology GmbH, D-86159 Augsburg ³GSI Helmholtzzentrum für Schwerionenforschung, D-64291 Darmstadt ⁴Vilnius University, LT-10257 Vilnius (Lithuania) ⁵European X-Ray Free-Electron Laser Facility, Holzkoppel 4, D-22869 Schenefeld

ADAMAS_Workshop_Wien_2018

Part I: Progress in Heteroepitaxial Growth

- The layer system Dia/Ir/YSZ/Si
- Recent progress in dislocation density
- Recent progress in size
- Outlook for ELO

Part II: Characterization

- Methods: Free carrier absorption, CCE,TCT,
- Trapping, carrier lifetime
- Correlation with dislocation density

ADAMAS_Workshop_Wien_2018

Diamond_activities_@Uni-Augsburg_2018

Sample size

ADAMAS_Workshop_Wien_2018

ADAMAS_Workshop_Wien_2018

8

APPLICATIONS

Part II

Characterization:

How crucial is the role of dislocations?

STATE OF THE ART & POTENTIAL FOR FURTHER IMPROVEMENT

ADAMAS_Workshop_Wien_2018

15

CHARGE COLLECTION EFFICIENCY MEASUREMENTS

Measurements with high-impedance charge-sensitive amplifier (CSA) (integration time ~ 10 μ s)

alpha CCE measurement of unpumped DoI samples MFAIX394 in vacuum Am-241 (5kBq), blue LED illumination at 0V between steps guard ring at same potential as measurement electrode

ADAMAS_Workshop_Wien_2018

ADAMAS_Workshop_Wien_2018

Estimation: ~1 ppb of compensated boron (i.e. B- traps)

ADAMAS_Workshop_Wien_2018

21

TRAPPING CENTERS

Charged trap: Coulomb energy of point charge

ADAMAS_Workshop_Wien_2018

H. Pinto and R. Jones: Theory of the birefringence due to dislocations in single crystal CVD diamond, J. Phys.: Condens. Matter 21 (2009) 364220

The stress field around the dislocations also modifies valence and conduction band edge \rightarrow trapping potential

- Ir/YSZ/Si substrates + BEN + extended growth
 → Dia(001) with high structural quality
- Wafer scale diamond(001): 155 ct, $\Phi \sim 3.5$ "
- Material available via Augsburg Diamond Technology GmbH
- Recent progress in dislocation density reduction
- Improved understanding of dislocations as charge carrier traps

THANKS FOR YOUR ATTENTION

ADAMAS_Workshop_Wien_2018