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Introduction
Introduction

@ diamond used as beam condition monitors at LHC

@ diamond as future material for tracking detectors in high radiation areas

Properties

@ radiation tolerant
@ isolating material

o high charge carrier mobility

Investigation of Rate Effects:

@ Pad Detectors — whole diamond as single cell readout
o Pixel Detectors — diamond sensor on pixel readout chip

@ 3D Pixel Detectors — 3D diamond detector on pixel readout chip
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Introduction
Introduction

@ diamond used as beam condition monitors at LHC

@ diamond as future material for tracking detectors in high radiation areas

Properties

@ radiation tolerant
@ isolating material

@ high charge carrier mobility

Investigation of Rate Effects:

o Pad Detectors — this talk
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Measurements
Measurements

@ several beam test starting from May 2015

Name Type Irradiation [n/cm?
S1 scCVD 0

poly A pCVD 0

poly B pCVvD 0

poly C pCVvD 1-10%

poly D pCVvD 0

poly E pCVD 5.10™

poly F pCVD 0~ 35-10%

poly G pCVD 0~ 8-10%

poy H pCVvD 0

Table: Measured diamonds and irradiations.

@ irradiation with thermal neutrons at Ljubljana

@ irradiations in steps and always remeasured
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PSI Experimental Hall

e High Intensity Proton Accelerator (HIPA) at PSI (Cyclotron) — beam line PiM1

e clean positive pion beam (~98 % 7t*) with momentum of 260 MeV/c
> ¥ smaller signals than at CERN! (120 GeV/c)

e tunable particle fluxes from O (1kHz/cm?) to O (10 MHz/cm?)

e significant multiple scattering — worsens resolution

1 Ringzyklotron
590 MeV =
5

Muon
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Setup
Setup

Pad Detectors

Telescope
Planes

Figure: Modular Beam Telescope

@ 4 tracking planes — trigger (fast-OR) with adjustable effective area

diamond pad detectors in between tracking planes

low time precision of fast-OR trigger (25 ns)

o fast scintillator for precise trigger timing — O (1 ns)
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Schematics
Schematic Se

¢\ Trigger

Beam

Scnﬁlitor

o PSI DRS4 Evaluation Board as digitiser for the pad waveforms
o Digital Test Board (DTB) and pXar software for the telescope readout
o global trigger: using coincidence of FOR 2 and FOR 3 + scintillator signal

@ using custom built Trigger Unit (TU) to handle all the trigger logic
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Detector
Pad Detecto

(a) Detector Box (b) Pad Detector with Amplifier

@ building the detector: cleaning, photo-lithography and Cr-Au metallisation
@ gluing to PCBs in custom built amplifier boxes

@ connecting to low gain, fast amplifier with O (5 ns) rise time
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Typical Behaviour

Rate Scan

Currents of poly H at -1000 V - Run Plan 15 - ISEG NHS-6220x
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e typical rate scans for up to ~30h with rates up to ~20 MHz/cm?

@ beam induced current clearly visible

o low leakage currents (<10nA) at 2V/pm
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Typical Behaviour

Current Vs. Fl

Leakage Current vs. Flux
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@ beam induced current increases linearly with increasing flux

@ interpolated leakage current: 2.63nA
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@ also observe slowly

M. Reichmann

Unusual

Currents of poly G at -1000 V - Run Plan 08 - Keithley 237
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changing base lines (2/10 scans)
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Unusual

Unusual Behav

0 Currents of poly G at -1000 V - Run Plan 13 - Keithley2657A 2657
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@ also observe slowly changing base lines (2/10 scans)

o high spikes and erratic currents (mainly at high fluxes, 1/10 scans — excluded from
further analysis)
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Waveforms

Waveforms
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Figure: Peak timings.

@ most frequent peak (@ ~35ns) — signal from triggered particle

@ other peaks from other bunches — resolve bunch spacing of PSI beam: ~19.8 ns

@ signals in pre-signal bunch forbidden — noise extraction
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Signal
Signal Definition
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@ perform DRS4 timing correction (circular buffer with varying cell size: (0.5 & 0.3) ns)
o define signal region: ~ 4 10ns around peak of the triggered signal — [60 ns, 80 ns]
e signal: finding the peak in the signal region and integrate around it [—4ns, 6 ns]

o pedestal: same integral in the centre of the pre-trigger bunch — [40ns, 60 ns]

M. Reichmann (ETHziirich) Pad Analysis 14th December 2018 13 /25



Signal to Noise Ratios

Right Length [ns]

17.9

5 2 25 3 35 4 45 5 55 6 65 178

Left Length [ns]

o left length = integration width to the left of the peak position
@ optimise SNR by scanning the integral width in both directions
@ maximum values around the FWHM of the peak

@ wide plateau around the maximum
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Event Cuts

@ separate pedestal and signal

Exclude Events:
@ saturated

@ pulser

9 6'7T) [e19NPId

@ incomplete tracks
@ wrong peak timing
@ outside fiducial region

@ during beam interruption

Also cuts on:
o track x? in x- and y-direction
@ track slope

@ pedestal sigma

o after all cuts usually ~25% event left
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Track Slope

Track Slope
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@ only take events with £1° around the most probable slope
@ slope has direct influence on the track length inside the sensor

@ slope distribution slightly changes in every setup
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Pedestal

Noise Distributi

Pedestal Distribution Pedestal Distribution
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(a) scCVD (6dB attenuation) (b) pCVD
@ noise distribution agrees well with Gaussian even at high rates
@ extract noise by taking the sigma of the Gaussian fit
@ noise very similar for scCVD and pCVD diamond
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Signal

Signal Distributi

Pulse Height with Pedestal Correction

Pulse Height with Pedestal Correction
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(a) scCVD (6dB attenuation)

@ correction by the mean of the noise (baseline offset)

@ pCVD signal smaller and wider (less uniform)

e FWHM/MPV:

> sCVD: ~0.3
» pCVD: ~1.0

Pad Ana
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(b) pCVD
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Signal Maps

Signal Map T r 1605
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@ uniform signal distribution in scCVD

@ signal corresponding to wide Landau in pCVD
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Signal

Rate Studies in

S1 Rate Scans at -500V
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@ rate scaled to the mean

@ scCVD diamond shows now rate dependence within the measurement precision

@ noise stays constant
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Signal

Rate Studies in

S1 Rate Scans at +500V
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@ rate scaled to the mean

@ scCVD diamond shows now rate dependence within the measurement precision

@ noise stays constant
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pCVD - Non-lrr

All Rate Scans at -1000V
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@ most non-irradiated pCVD diamonds have slight rate dependence (<5 %)

@ behaviour very similar for both positive and negative bias voltage

Pad Analysis
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pCVD - Non-lrr

All Rate Scans

1.1 ‘ ] [epoly G +1000V
e i ,‘ ,,,,,,,,,,,,,,, e :z.',,, @ ; R
E) 12. 99 @ . .
:GE) O'ggmi CUTTTT CTTTT | [
o 11E : : [mpolyD +1000V
[%2] - : ;
= R S N N S
D::) 1; & ) L | Lo - - » :
8 O'ggmi CTTTT T | L1
< 11E : ‘ [Apoly B +900V
[&] E : : : :
n Lt w e e S
Og%mi CTTT CrrrTT | L1
10 10? 10° 10*

Flux [kHz/cm?]
@ rate scaled to the mean

@ most non-irradiated pCVD diamonds have slight rate dependence (<5 %)

@ behaviour very similar for both positive and negative bias voltage
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Signal

A Special Case
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(a) First measurement. (b) After reprocessing.

@ very large rate dependence at the first measurement (>90 %)

o after reprocessing and surface cleaning with RIE very stable behaviour (~2 %)

@ possible to “fix" bad diamonds
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Signal

Detailed Study

!
FIrradiation: nonirradiated
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@ largest increase of pulse height found so far
@ all measurements very continuous and reproducible

@ only very weak theories for this behaviour — try to model it

@ try to fix by reprocessing
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Rate Studies in |

Scaled Pulse Height
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Signal

@ rate scaled to the mean

@ pulse height very stable after irradiation

@ noise stays the same
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Conclusion

built beam test setup to characterise the rate behaviour of diamond pad detectors

@ most leakage currents <10nA and beam induced currents linear with flux

@ pCVD diamond show non-uniformity according to wide landau of the signal
depending on the position in the diamond

@ nonirradiated scCVD show no rate dependence (large in irradiated)

@ rate dependence for most non-irradiated pCVD <5 %

> unknown origin, maybe surface contamination during production
> possible to fix it for one sample — try to repeat it

@ detectors with irradiated pCVD diamond sensors have a rate dependence below
~2% up to a flux of 20 MHz/cm?

M. Reichmann (ETHziirich) Pad Analysis 14th December 2018 25 /25






	Introduction
	Introduction
	Measurements

	Test Site
	PSI Experimental Hall

	Setup
	Setup
	Schematics
	Detector

	Measured Currents
	Typical Behaviour
	Unusual

	Analysis
	Waveforms
	Signal
	SNR
	Cuts
	Track Slope

	Results
	Pedestal
	Signal

	Conclusion

