ETH

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Analysis of CVD Diamond Pad Detectors

7th ADAMAS Workshop in Vienna

Michael Reichmann

14th December 2018

Table of Contents

Introduction

2 Test Site

3 Setup

5 Analysis

6 Results

Section 1

Introduction

- ${\scriptstyle \bullet}$ diamond used as beam condition monitors at LHC
- ${\ensuremath{\bullet}}$ diamond as future material for tracking detectors in high radiation areas

- diamond used as beam condition monitors at LHC
- diamond as future material for tracking detectors in high radiation areas

Properties

- radiation tolerant
- isolating material
- high charge carrier mobility

- \bullet diamond used as beam condition monitors at LHC
- diamond as future material for tracking detectors in high radiation areas

Properties

- radiation tolerant
- isolating material
- high charge carrier mobility

Investigation of Rate Effects:

- $\bullet~\mbox{Pad}~\mbox{Detectors} \to \mbox{whole}~\mbox{diamond}~\mbox{as}~\mbox{single}~\mbox{cell}~\mbox{readout}$
- \bullet Pixel Detectors \rightarrow diamond sensor on pixel readout chip
- \bullet 3D Pixel Detectors \rightarrow 3D diamond detector on pixel readout chip

Introduction

- \bullet diamond used as beam condition monitors at LHC
- diamond as future material for tracking detectors in high radiation areas

Properties

- radiation tolerant
- isolating material
- high charge carrier mobility

Investigation of Rate Effects:

- \bullet Pad Detectors \rightarrow this talk
- Pixel Detectors
- 3D Pixel Detectors

• several beam test starting from May 2015

Name	Туре	Irradiation [n/cm ²]
S1	scCVD	0
poly A	pCVD	0
poly B	pCVD	0
poly C	pCVD	$1\cdot 10^{14}$
poly D	pCVD	0
poly E	pCVD	$5\cdot 10^{14}$
poly F	pCVD	$0\sim 3.5\cdot 10^{15}$
poly G	pCVD	$0\sim 8\cdot 10^{15}$
poly H	pCVD	0

Table: Measured diamonds and irradiations.

- irradiation with thermal neutrons at Ljubljana
- irradiations in steps and always remeasured

Section 2

Test Site

Test Site

- \bullet High Intensity Proton Accelerator (HIPA) at PSI (Cyclotron) \rightarrow beam line PiM1
- ullet clean positive pion beam (~98 $\%~\pi^+)$ with momentum of 260 MeV/c
 - $\frac{3}{4}$ smaller signals than at CERN! (120 GeV/c)
- tunable particle fluxes from $\mathcal{O}\left(1\,\text{kHz/cm}^2\right)$ to $\mathcal{O}\left(10\,\text{MHz/cm}^2\right)$
- \bullet significant multiple scattering \rightarrow worsens resolution

Section 3

Setup

Setup

Figure: Modular Beam Telescope

- 4 tracking planes \rightarrow trigger (fast-OR) with adjustable effective area
- diamond pad detectors in between tracking planes
- low time precision of fast-OR trigger (25 ns)
- ullet fast scintillator for precise trigger timing $\rightarrow \mathcal{O}\left(1\,\text{ns}\right)$

Setup Schematics

Schematic Setup

- PSI DRS4 Evaluation Board as digitiser for the pad waveforms
- $\bullet\,$ Digital Test Board (DTB) and pXar software for the telescope readout
- $\bullet\,$ global trigger: using coincidence of FOR 2 and FOR 3 $+\,$ scintillator signal
- \bullet using custom built Trigger Unit (TU) to handle all the trigger logic

Pad Detectors

(a) Detector Box

(b) Pad Detector with Amplifier

- building the detector: cleaning, photo-lithography and Cr-Au metallisation
- gluing to PCBs in custom built amplifier boxes
- \bullet connecting to low gain, fast amplifier with $\mathcal{O}\left(5\,\text{ns}\right)$ rise time

Section 4

Measured Currents

Rate Scan

- \bullet typical rate scans for up to ${\sim}30\,h$ with rates up to ${\sim}20\,MHz/cm^2$
- beam induced current clearly visible
- \bullet low leakage currents (<10 nA) at $2\,V/\mu m$

Current Vs. Flux

- beam induced current increases linearly with increasing flux
- interpolated leakage current: 2.63 nA

Unusual Behaviour

• also observe slowly changing base lines (2/10 scans)

Unusual Behaviour

- also observe slowly changing base lines (2/10 scans)
- \bullet high spikes and erratic currents (mainly at high fluxes, 1/10 scans \to excluded from further analysis)

Section 5

Analysis

Analysis Waveforms

Waveforms

- most frequent peak (@ \sim 35 ns) \rightarrow signal from triggered particle
- $\bullet\,$ other peaks from other bunches \rightarrow resolve bunch spacing of PSI beam: ${\sim}19.8\,\text{ns}$
- \bullet signals in pre-signal bunch forbidden \rightarrow noise extraction

Analysis Signal

Signal Definition & Calculation

• perform DRS4 timing correction (circular buffer with varying cell size: (0.5 ± 0.3) ns)

- ullet define signal region: $\sim\pm$ 10 ns around peak of the triggered signal \rightarrow [60 ns, 80 ns]
- signal: finding the peak in the signal region and integrate around it [-4 ns, 6 ns]
- pedestal: same integral in the centre of the pre-trigger bunch \rightarrow [40 ns, 60 ns]

Analysis SNR

Signal To Noise Ratio

- \bullet left length = integration width to the left of the peak position
- optimise SNR by scanning the integral width in both directions
- maximum values around the FWHM of the peak
- wide plateau around the maximum

Analysis Cuts

Event Cuts

separate pedestal and signal

Exclude Events:

- saturated
- pulser
- incomplete tracks
- wrong peak timing
- outside fiducial region
- during beam interruption

Also cuts on:

- \bullet track χ^2 in x- and y-direction
- track slope
- pedestal sigma
- \bullet after all cuts usually ${\sim}25\,\%$ event left

Analysis Track Slope

Track Slope

- \bullet only take events with $\pm 1^\circ$ around the most probable slope
- slope has direct influence on the track length inside the sensor
- slope distribution slightly changes in every setup

Section 6

Results

Results Pedestal

Pedestal Distribution

Noise Distributions high rate

Pedestal Distribution

- noise distribution agrees well with Gaussian even at high rates
- extract noise by taking the sigma of the Gaussian fit
- noise very similar for scCVD and pCVD diamond

Signal Distributions high rate

- correction by the mean of the noise (baseline offset)
- pCVD signal smaller and wider (less uniform)
- FWHM/MPV:
 - ► sCVD: ~0.3
 - ▶ pCVD: ~1.0

Signal Maps

- uniform signal distribution in scCVD
- signal corresponding to wide Landau in pCVD

Rate Studies in Non-Irradiated scCVD

- rate scaled to the mean
- scCVD diamond shows now rate dependence within the measurement precision
- noise stays constant

Rate Studies in Non-Irradiated scCVD

- rate scaled to the mean
- scCVD diamond shows now rate dependence within the measurement precision
- noise stays constant

Μ.	Reichmann	(IIII zürich)
----	-----------	---------------

• rate scaled to the mean

- most non-irradiated pCVD diamonds have slight rate dependence (<5%)
- behaviour very similar for both positive and negative bias voltage

- rate scaled to the mean
- \bullet most non-irradiated pCVD diamonds have slight rate dependence (<5%)
- behaviour very similar for both positive and negative bias voltage

A Special Case

- very large rate dependence at the first measurement (>90 %)
- after reprocessing and surface cleaning with RIE very stable behaviour ($\sim 2\%$)
- possible to "fix" bad diamonds

Detailed Study of Rate Dependence

- largest increase of pulse height found so far
- all measurements very continuous and reproducible
- \bullet only very weak theories for this behaviour \rightarrow try to model it
- try to fix by reprocessing

Rate Studies in Irradiated pCVD

- rate scaled to the mean
- pulse height very stable after irradiation
- noise stays the same

Section 7

Conclusion

- built beam test setup to characterise the rate behaviour of diamond pad detectors
- $\bullet\,$ most leakage currents ${<}10\,\text{nA}$ and beam induced currents linear with flux
- pCVD diamond show non-uniformity according to wide landau of the signal depending on the position in the diamond
- nonirradiated scCVD show no rate dependence (large in irradiated)
- \bullet rate dependence for most non-irradiated pCVD ${<}5\,\%$
 - unknown origin, maybe surface contamination during production
 - \blacktriangleright possible to fix it for one sample \rightarrow try to repeat it
- $\bullet\,$ detectors with irradiated pCVD diamond sensors have a rate dependence below ${\sim}2\,\%$ up to a flux of 20 MHz/cm²

Del Fin