

ADVANCES IN DIAMOND BASED MICRODOSIMETRY FOR HADRONTHERAPY

Michal Pomorski, ADAMAS2018, 13-14 December 2018, Wien

• Context

- \circ $\,$ Fabrication of the diamond microdosimeters $\,$
- Sensors' characterization under nuclear microbeam probe
 - Sensors' performance in clinical beam
 - \circ Summary and what's next

HADRON THERAPY

100-

80

60

40

20

0

0

Relative dose / %

list

Ceatech

[A. Rosenfeld]

Photons

 120 hadron therapy centres worldwide (increasing);
 3 operating clinical proton therapy centres in France: Orsay, Nice, Caen;

Protons

10

Carbons

Depth / cm

X-rays

5

an intense field of research activity including new methods of treatment (¹⁶O, ¹⁴N, micro,minibeams, FLASH).

Most of the energy is lost in the **Bragg Peak**

[A. Rosenfeld]

lons

Tumour

15

LINEAR ENERGY TRANSFER

SPARSELY ionizing radiation:

e.g.: X-rays, Gammas

Low LET

DENSELY ionizing radiation:

e.g.: Carbon ions

RADIATION QUALITY - MICRODOSIMETRY

'MICRODOSIMETRY is a methodology that involves the measurement or calculation of stochastic energy deposition distributions in a micron size sensitive volume (SV) within any arbitrary mixed radiation field.'

Ź

picture from Si-3DMiMic collaboration

list

Ceatech

microdosimetry

single-particles (low charge),
ns to µs integration time (10^9 p/cm2),
pulse-height spectra,
SV from micro to nano size

(30 μ m cell, 10 μ m cell nucleus, > 1 μ m DNA size)

dosimetry at micron scale

ms integration time
DC current or charge
macroscopic (mm) SV size

list Ceatech

RADIATION QUALITY - MICRODOSIMETRY

Relative biological efficiency (RBE)

- · Biological basis : clinical impact
- ♦ Dose/RBE inhomogeneities → LET painting, late effect epidemiology

list

MICRODOSIMETERS STATE OF THE ART

	Tissue Equivalent Proportional Counter (TEPC):	Silicon Solid-State Microdosimeters (Mushroom):	Diamond Solid-State Microdosimeters:
-	The 'Gold Standard' Tissue-Equivalence & Radiation Hardness Sensitive (Internal Amplification)	Compact Device Multiple Micro-SVs Si - Easy for Microfabrication	More Tissue-Equivalent (Z = 6) Radiation Hardness No Leakage Current, Fast Drift Velocity for e-h, Low Capacitance
•	Maintenance (Gas Flow & High Voltage) Low Spatial Resolution Large size	Radiation Hardness ? Tissue-Equivalence ? (Correction Factor)	High ~13 eV/e-h - Lower Signal Diamond - 6' Wafers rather Difficult

Freestanding single crystal diamond membranes (<10 µm) of up to several mms later size

i

Αl

0.00e+00

1.20e+04

2.40e+04

3.59e+04

TCAD charge transport simulations ongoing

4.78e+04

DIAMOND MEMBRANE MICRODOSIMETER PROTOTYPES

scCVD diamond membrane DIAµDOS p+ microdosimeter

SEM Image

0V extr. bias, fully depleted

ADAMAS2018, 13-14 December 2018, Wien | Michal Pomorski | 9

4 µm

7.17e+04

5.98e+04

DIAMOND MEMBRANE MICRODOSIMETER PROTOTYPES

scCVD diamond membrane DIAµDOS guard- ring microdosimeter:

list

Ceatech

m-i-m (ionization chamber approach)

PROBING CHARGE TRANSPORT WITH IBIC

IBIC (Ion Beams Induced Current):

list

Clatech

- Single ion irradiation (precision: 1 micron)
- Raster scanning + pulse height spectra
- Charge transport maps (µSV definition)
- Well controlled projectile Energy and LET

Perfect tool to test new types of microdosimeters before implementing in clinical conditions (less control)

Several beamtimes @ microbeam facilities:

H 2.0 MeV He 3.0 MeV

H 2.0 MeV He 1.5 MeV/3MeV/5.5 MeV ¹⁶O=8MeV/17.5MeV/25MeV ¹²C 6 MeV/16.6 MeV/24 MeV

covers wide span of LET present in clinics

Analog read-out electronics:

Raster scan of device @ 0 V

Microscopic Image

* Number of detected ions / pixel

12 INSTITUT CARNOT CEA LIST UNIVERSITÉ PARIS-SACLAY

IBIC – GLOBAL RESPONSE GUARD RING @ 20V

Raster scan of device @ +20 V

Microscopic Image

IBIC – DETAIL P+ @ 0 V

Response of DIAµDOS p+ to 2 MeV single proton ion beam

Performance approaching SoA silicon based microdosimeters

IBIC – DETAIL GUARD RING @ 20V

list

Ceatech

Response of DIAµDOS guard ring to 2 MeV single proton ion beam

Performance approaching SoA silicon based microdosimeters

P+ SENSORS PERFORMANCE IN CLINICAL PROTON BEAM

Institute Curie, Proton Therapy Center (Orsay, France)

- Proton beamline for intracranial treatments
- 100 MeV p
- 80 mm variable thickness solid-water phantom
- diamond p+ microdosimeter prototypes

Single proton pulse-height measurement in clinical conditions

Dosimetry

'DC' induced charge/current (ms) monitoring, with commercial high precision electrometer used in clinics for dosimetry

SENSORS PERFORMANCE IN CLINICAL PROTON BEAM

Preliminary diamond p+ microdosimeter prototype performance

- works in clinical environment (!)

list

ceatech

- no tissue-equivalent packaging...
- no calibration (rather qualitative meas.)
- but trend identical to Si micro. (very promising)

Anderson et al.: Med. Phys. 44 (11), November 2017

P+ SENSORS PERFORMANCE IN CLINICAL PROTON BEAM

Use of diamond p+ microdosimeter as a low noise dosimeter

list

Ceatech

SUMMARY

AND WHAT'S NEXT

st

ceatech

Prototyping and microfabrication

Ion microprobe characterization

LET simulation

More prototypes based on p+ and guard ring approach (3D etching, isolation gap) + TCAD simulations and IBIC

Dedicated pcb's + universal chip carrier mounting of the sensors + encapsulation

with possible electronics integration (ASIC)

Clinical evaluation of encapsulated devices @TIRO/Lacassagne p Center + LET simulations

AUTHORS AND CO-AUTHORS

ORIGINAL PAPER

Microdosimeter

scCVD Diamond Membrane based Microdosimeter for Hadron Therapy

Izabella A. Zahradnik,* Michal T. Pomorski,* Ludovic De Marzi, Dominique Tromson, Philippe Barberet, Natko Skukan, Philippe Bergonzo, Guillaume Devès, Joël Herault, Wataru Kada, Thierry Pourcher, and Samuel Saada

NATIONAL AND INTERNATIONAL COLLABORATIONS

DIADEM : Diamond membrane based microdosimetric system for radiation quality assurance in hadron therapy 2 years **national project**; *kick-off 26/11/2018*

linoc

Postdoctoral Scientist

1 year contract asap

The position:

- MC simulations of clinical proton/carbon beams interactions with matter, to benchmark experimental response of the microdosimeter prototypes
- participation in beamtimes for devices testing with clinical beams and particle microbeams at accelerator facilities
- possible participation in fabrication process of the devices (surfaces preparation, thin layer deposition, photolithography, dry plasma etching)

Requirements:

- PhD in physics/medical physics or equivalent
- knowledge of relevant Monte Carlo simulation programs
- knowledge of solid-state particle detectors, associated electronics and signal processing, possibly including some experience at accelerator facilities
- · communication verbally and written in English (French would be additional asset)
- knowledge of simple printed circuit boards design and semiconductors simulation software would be an asset

III Thank you very much for your kind attention III

Séminaire annuel des PTC-PE les 20, 21 et 22 novembre 2018 | Michal Pomorski | 22 🍸

Commissariat à l'énergie atomique et aux énergies alternatives Institut List | CEA SACLAY NANO-INNOV | BAT. 861 – PC142 91191 Gif-sur-Yvette Cedex - FRANCE www-list.cea.fr

Établissement public à caractère industriel et commercial | RCS Paris B 775 685 019