Fast Diamond Detectors for Beam Tagging Applications in Hadrontherapy

LPSC and UGA Grenoble, France

M Fontana, J Krimmer, E Testa
IPNL Lyon, France

M Salomé, J Morse, W De Nolf
ESRF Grenoble, France

T Crozes, JF Motte
Institut Néel Grenoble, France
Advantages and pitfalls in hadrontherapy

Nominal situation

Bragg peak

Amaldi and Kraft, Rep Prog Phys 2005
Advantages and pitfalls in hadrontherapy

Nominal situation

Bragg peak

Actual situation

Need for on-line range verification

Amaldi and Kraft, Rep Prog Phys 2005

Knopf et al. PMB 2013
Range monitoring with prompt gammas

Prompt gammas

- Emitted by nuclear de-excitation following NN collisions in the patient
 - nearly isotropic
 - $0 < E_\gamma < 10$ MeV
 - emission within < 1 ps

Compton camera CLaRyS (IPNL, CPPM, LPC, LPSC)

Hodoscope:
- Incident ion (bunch) position (reconstruction of the PG emission point)
- Incident ion (bunch) arrival time (TOF)
TOF detection of prompt gammas

Background reduction (increased sensibility)

95 MeV/u 12C beam on PMMA target
(BaF$_2$ at $d>50$cm from target)

TOF resolution \sim 1 ns required
TOF detection of prompt gammas

Background reduction (increased sensibility)

95 MeV/u 12C beam on PMMA target
(BaF$_2$ at d>50cm from target)

TOF resolution ~ 1 ns required
TOF detection of prompt gammas

Background reduction (increased sensibility)

95 MeV/u 12C beam on PMMA target
(BaF$_2$ at $d>50$cm from target)

TOF resolution \sim 1 ns required

Necessary for 12C treatment

300 MeV/u 12C beam on PMMA target

Prompt gamma profiles **WITHOUT TOF**

Prompt gamma profiles **WITH TOF**
TOF detection of prompt gammas

Background reduction (increased sensibility)

95 MeV/u 12C beam on PMMA target (BaF_2 at $d>50\text{cm}$ from target)

TOF resolution $\sim 1\text{ ns}$ required

Necessary for 12C treatment

300 MeV/u 12C beam on PMMA target

Prompt gamma profiles WITHOUT TOF

Prompt gamma profiles WITH TOF

An external detector is necessary for multi-energy treatment (RF varies phase!).
High-resolution TOF detection of prompt gammas

A little bit of kinematics . . .

A 200 MeV proton travels at $\sim c/2$

A 100 ps TOF resolution allows determining the γ vertex within 1.5 cm

→ Higher SNR expected
→ No reconstruction needed for Compton imaging (Real Time !)

On-going development at LPSC: diamond-based hodoscope

Specifications:
- Time resolution ~ 100 ps
- Count rate ~ 10 MHz per channel
- Spatial resolution ~ 1 mm
- Radiation resistant

Protontherapy (Cyclotron IBA/C230)
- ~ 2 ns bunch every 10 ns
- 200 p/bunch → Bunch tagging

Carbontherapy (Synchrotron)
- ~ 30 ns bunch every 200 ns
- 10 ions/bunch → Ion tagging
Characterisation of diamond detectors

Available samples

<table>
<thead>
<tr>
<th>sc-CVD</th>
<th>sc-HPHT</th>
<th>DOI</th>
<th>pc-CVD</th>
</tr>
</thead>
<tbody>
<tr>
<td>E6</td>
<td>NDT</td>
<td>AuDiaTec</td>
<td>E6</td>
</tr>
<tr>
<td>5x5 mm² x 3</td>
<td>5x5 mm² multisector x 1</td>
<td>5x5 mm² x 3</td>
<td>10x10 mm² x 5</td>
</tr>
<tr>
<td>3x2.5 mm² monosector x 1</td>
<td>10x10 mm² x 2</td>
<td></td>
<td>20x20 mm² x 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>II-VI</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>10x10 mm² x 1</td>
<td></td>
</tr>
</tbody>
</table>

50 Ω adapted PCBs

EM shielding box

Readout electronics:
(CIVIDEC for single channel custom for multi-channel)
Detector surface analysis with XBIC - single channel diamonds at 500 V

Mimic the interaction of single particles

8.5 keV X-rays
1 \(\mu \)m spot
1500 photons/bunch
Bunch width = 100 ps
E_{dep} \sim 3.3 \text{ MeV max}

2D detector scans at \sim 40 \(\mu \)m steps

5x5 mm\(^2\) x 500 \(\mu \)m sc-CVD from E6

\(< I > = 124 \text{nA}

5x5 mm\(^2\) x 300 \(\mu \)mDOI from AuDiaTec

\(I_{\text{peak}} = 14 \text{nA} \)

Works perfectly despite heterogeneous response
Detector surface analysis with XBIC - stripped diamonds at 300 V

- $I_{\text{peak}} = 4\text{nA}$
- $I_{\text{peak}} = 6\text{nA}$
- $I_{\text{peak}} = 3\text{nA}$

- Current response seems related to surface defects
- DOI and pc-CVD showed the same current response
Detector surface analysis with XBIC - stripped diamonds at 300 V

1x1 cm² x 300 µm DOI from AuDiaTec

1x1 cm² x 300 µm pc-CVD from E6

- $I_{\text{peak}} = 4\text{nA}$
- $I_{\text{peak}} = 6\text{nA}$
- $I_{\text{peak}} = 3\text{nA}$

- current response seems related to surface defects
- DOI and pc-CVD showed the same current response
Diamond detection efficiency

Triple/double coincidences
- Beam intensity = 1 pA (< 1p/bunch)
- 1 p signals selected on external detector
- Variable thresholds on DOI and pc-CVD

Detection efficiency:
- = 0.3% – 40% for DOI
- = 75% – 90% for pc-CVD

Low intensity 160 fA
(<< 1 p/pulse)

2 protons

High intensity 25 nA
(5000 p/pulse → attenuated signal)

pc-CVD 1 cm2
DOI 1 cm2
Diamond time resolution - penetrating radiation

Context
Development of a beam tagging hodoscope

Conclusions
Characterisation of diamond detectors
Characterisation of hodoscope demonstrator

Characterisation of diamond detectors

Single crystal
- **sc-CVD E6**
 - $0.45 \times 0.45 \text{ cm}^2 \times 518 \text{ } \mu\text{m}$

Heteropitaxial DOI
- **DOI Augsburg**
 - $0.5 \times 0.5 \text{ cm}^2 \times 300 \text{ } \mu\text{m}$

Diamond time resolution - penetrating radiation

- **95 MeV/u 12C at GANIL**
 - Edep = 25 MeV in DOI
 - Edep = 44 MeV in sc-CVD
 - $\sigma_t = 18 \text{ ps}$

- **68 MeV protons at ARRONAX**
 - Edep = 1.2 MeV in DOI
 - Edep = 1.8 MeV in sc-CVD
 - $\sigma_t = 60 \text{ ps}$

- **XBIC source at ESRF**
 - Edep = 0.7 – 3.4 MeV in DOI
 - Edep = 0.7 – 3.3 MeV in sc-CVD

Sara Marcatili - LPSC Grenoble

ADAMAS 2018
Characterisation of stripped detectors

NANOFAB Néel Institut Grenoble

LPSC Grenoble
Detector scanning with XBIC source (100µm step - Edep ~3.3 MeV)

Detector scanning with XBIC source (100µm step - Edep ~3.3 MeV)

TOF resolution: X vx Y strips

COG reconstructed X position

Strip detection efficiency
On going development: front-end microelectronics

130 nm CMOS TIA + Fast discriminator

- Radhard technology
- Wide bandwidth, low noise TIA
- 8 channels: V1 submitted Jan. 2018, V2 Nov. 2018

<table>
<thead>
<tr>
<th>TIA Parameters</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>A₀</td>
<td>> 60 dB</td>
</tr>
<tr>
<td>F₋₃dB</td>
<td>1.2 GHz</td>
</tr>
<tr>
<td>Zᵢₙ</td>
<td>20 - 50 Ω</td>
</tr>
<tr>
<td>Vₙ,out (output range)</td>
<td>< 1 mVₚₛₛ</td>
</tr>
<tr>
<td>Input Dynamic range</td>
<td>3 µA - 120 µA</td>
</tr>
<tr>
<td></td>
<td>(non-linearity <1%)</td>
</tr>
</tbody>
</table>
A fast beam tagging hodoscope for range monitoring in hadrontherapy

Aim: exploit the ultra-fast coincidence time to detect range variations due to target heterogeneities

- Detector signals sampled with Wavecatcher (3.2 Gs/s)
- Trigger on one gamma detector
Beam test results

Experiment: PG timing spectrum

PROMPT GAMMA TIMING - LaBr at 120 deg - d = 25 mm - 68 MeV protons

<table>
<thead>
<tr>
<th>targets</th>
<th>Entries</th>
<th>χ^2 / ndf</th>
<th>$A1$</th>
<th>$m1$</th>
<th>$s1$</th>
<th>$A2$</th>
<th>$m2$</th>
<th>$s2$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3009</td>
<td>64.24 / 24</td>
<td>193 ± 7.1</td>
<td>31.1 ± 0.0</td>
<td>0.2443 ± 0.0142</td>
<td>183.2 ± 16.8</td>
<td>31.53 ± 0.01</td>
<td>0.1507 ± 0.0078</td>
</tr>
</tbody>
</table>

$\sigma_t = 111$ ps

Target heterogeneity thickness: measured vs actual value

MC simulations for sensibility assessment

G4 simulations with Gaussian smearing - LaBr 120 deg

50% threshold

Measured distribution width
Beam test results

Experiment: PG timing spectrum

Target heterogeneity thickness: measured vs actual value

MC simulations for sensibility assessment

For 1 irradiation spot:
- 4 mm shift detectable at 3σ
- 2 mm shift detectable at 1σ
Diamond dosimeter for micro-beam radiotherapy at ESRF

MRT: 50 \(\mu \text{m} \) beamlets

First test September 2018 during animal irradiation

Development of dedicated QDC

Diamond dosimeter for micro-beam radiotherapy at ESRF

MRT: 50 \(\mu \text{m} \) beamlets

First test September 2018 during animal irradiation

Development of dedicated QDC
Conclusions and perspectives

- **Main goal**: fast timing for charged particles with large area detectors

- Characterization of the performances of small and medium size detectors with sources, ions, and synchrotron

- Multi-strip detectors: a first prototype of 1 cm² has been developed and tested with discrete electronics

- Experiments proved excellent timing resolution

- **Issue**: Large area diamond with high detection efficiency for protons hardly available

Next steps . . .

- NDT and II-VI diamonds to be tested

- Micro-electronics readout under development
Acknowledgements

The authors would like to acknowledge the **ESRF** for provision of synchrotron radiation facilities and would like to thank the ID21 beamline staff for their assistance with experiment MI-1243.

This work was supported by the **Labex PRIMES** (ANR-11-LABX-0063), **FranceHadron** (ANR-11-INBS-0007) and **ANR MONODIAM-HE** (ANR-089520).

The **CLARA Canceropole** (Oncostarter Project) is thanked.

The authors are grateful to **Matthias Schreck** from the Augsburg University for providing the LPSC laboratory with samples of diamond heteroepitaxially grown.

Dominique Breton from the Laboratoire de l’Accélérateur Linéaire and **Eric Delagnes** from CEA Saclay are thanked for their implication in dedicated software development and technical support of the namely "wavecatcher" data acquisition system.
Additional slides
Beam temporal structure

<table>
<thead>
<tr>
<th></th>
<th>Synchrotron (C230, IBA)</th>
<th>Cyclotron Varian</th>
<th>Synchro-cyclotron (S2C2, IBA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>12C Protons</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Typical intensity (ions/s)</td>
<td>10^7</td>
<td>10^9</td>
<td>10^{10}</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$10^8 - 10^{10}$</td>
<td>$\sim 10^{10}$</td>
</tr>
<tr>
<td>Macrostruct.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Period (s)</td>
<td>1 – 10</td>
<td>\varnothing</td>
<td>10^{-3}</td>
</tr>
<tr>
<td>Microstruct.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bunch width (ns)</td>
<td>20 – 50</td>
<td>1 – 2</td>
<td>0.5</td>
</tr>
<tr>
<td>Period (ns)</td>
<td>100 – 200</td>
<td>10</td>
<td>14</td>
</tr>
<tr>
<td>Ions/bunch</td>
<td>2 – 5</td>
<td>200</td>
<td>2 – 200</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4000</td>
</tr>
</tbody>
</table>

- Synchrotron and synchro-cyclotron: low duty cycle, favorable for PET
- Cyclotron: very short pulses, favorable for TOF-PG

- Possibility of a reduced beam intensity at the beginning of the treatment// (tagging of each ion)
TOF resolution with attenuated XBIC source

TOF resolution: DOI vs sc-CVD

- Time resolution degrades as SNR lowers
- Possible to stay below 150 ps σ at low deposited energies

Noise level assessment
two beam tests, same irradiation conditions, different detectors

- DOI vs sc-CVD
- DOI vs RF
- sc-CVD vs RF

2017 data

DOI vs DOI

2017 data with wavecatcher

2016 data with LeCroy