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The Transient Current Technique
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Such setup is able to measure:

» total collected charge versus injected charge - charge collection efficiency
« drift speed and mobility of electrons and holes

« charge carrier lifetimes

Different sources of excitation possible: a-, 3-sources, sub-bandgap lasers, ..

Time



Advantages of Edge-TCT over traditional TCT
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Absorption in the first
micrometers of the surface

Particle traverses the
whole sensor

—

Trapping & E-Field entangled

+ bad position resolution

+ deposited energy not easily
selectable

+ screening effects in case of
a-particles

+ source handling

Multi-Photon Absorption Laser Edge-TCT solves those problems by:

v generate charges in a selected position with micrometer precision
v' control the amount of injected charge through varying laser pulse energy

v’ directly measure the electric field
v' trigger on the laser pulse

v do 3D scans of the sensor bulk, which is not possible with sub bandgap

laser TCT



Working Principle of Edge-TCT
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Extractable Quantities:

» electric field (independent of trapping) - space charge
« trapping times

« saturation velocity

* mobility of electrons and holes
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1kHz, 800nm, ~100fs

. @® M2 waveplate
Ld @ polarizing cube
® alignment irises

8 @ mirrors

. ® barium borate crystal
® focusing lenses
@ 100x attenuator
- dichroic mirror
sensor . B - R O short-pass filter
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- beam splitter
amplifier

Setup at ETH Zurich without electric shielding and light-tight box



Oscilloscope

LV supply

DAQ PC Amplifier

xyz-stage

xyz-stage control

high voltage supply

Setup at ETH Zurich
without electric shielding
and light-tight box
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Charge Carrier Generation
Key Characteristic: Localized generation of charge carriers by multi-photon absorption

E, < EGap
Excited State 2 Photons arriving within Excited State
~100 attoseconds
E E—— SWAVAV.ai I
Y
N\~ E, NN\

Ground State Ground State

Very dense spatial and timed packing of photons required to have two photons
‘in the same place at the same time’!
-> Focal Point of Femtosecond Laser




Electronic Band Diagram of Diamond
1-, 2-, and 3-photon absorption through indirect and direct bandgap

N E Direct Bandgap
required energy = 7.3 eV /170 nm

Conduction
band

3-photon absorption: E, =2.43 eV /510 nm

Indirect Bandgap
required energy = 5.47 eV / 226 nm

(minus phonon contribution and exciton energy)

phonon |

absorbed
photon

2-photon absorption: E, =~ 2.74 eV / 453 nm

-~

: 4 Laser
0.76  k [n/a] - photon energy 3.1 eV (400 nm)
<100> e ~100 fs
Valence direction |. 0.1-5 nJ pulse energy eq. to 2*108 -
band 1010 photons/pulse
* 1 kHz repetition rate




Beam Characterization
Result from beam profiling with the knife-edge technique

Beam Waist

6 - Focus position: 58.215 +/- 0.004 mm *1
wO0: 1.49 +/- 0.18 um
Rayleigh length: 49.6 +/- 6.9 um
Beam opening angle: 3.43 deg (theta=1.72deg)
E M2 (beam quality): 0.7
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Optical Axis (z) [um] Z [mmj}
Beam profile from knife-edge scan in air Beam profile change due to refraction
Better focusing - higher opening beam loss outside of
angle of the beam - smaller sensor!
possible depth of scan. )&

ideally 22mm



Basic Optics

Refraction/Reflection

When light from an optically thin medium enters into a optically thick one the beam refracts toward the

normal. - Snell’'s law

LASERIn :
Diamond
Reflected
from diamond
(~17%) expected |
< actual N
Depth in Diamond [mm]
v Focal point position can be °f
modeled with Snell’s law.
(Finite elements simulation does ar
not fully agree with approximation.)
2_
0.5 1.0 15 2.0 25 3.0

Depth in Air [mm]
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Charge Carrier’s Generation Volume
Theoretical prediction of voxel volume with current lens setup
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Selected sCVD Diamond Sample

The results shown in the following slides stem from measurements on this diamond

* bought from Element 6 (through
DDL)

* Poor CCD performance
o requires high field (0.7 V/um) to
collect full charge

» thickness - 540 um

* Notirradiated

* pad metallized by Rutgers
University (TiW sputtered with
shadow mask)

(we usually do Cr-Au ourselves)

« metallization distance from edge
=400 pm (new: 150 pm)

« 2 edges polished
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Drift Speed [um/ns]

Presented Results

Charge Collection Map
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Waveforms
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Charge Collection Map

5 waveforms at x=const. and y=300 + 500um

Amplitude [mV]

g =-2.6V/um

Bias Voltage

The collected charge at every scan point
can be calculated as

ty
Q = / I(xa yaz)t)dt
ta

where t, and t, denote the integration times,
and were usually chosen to be 0-200ns.
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Mobility Measurement
The mobility describes the relationship between drift speed of the carriers and the electric field.

This is how it was measured:

Charge Profiles

1) Find the edges of the sensor:
By plotting the charge of several y-scans (red curve=average)
the edges can be fitted with complementary error functions.

Charge [pVs]

2) At a given voltage inject charges at different y-positions
and measure their drift time by fitting the resulting current pulses
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Amplitude [mV}

20 4

3) Speed Measurement
By fitting leading and trailing edge of the pulses the drift time can be extracted. Naturally the
drift speed is drift distance / drift time.

x=-24.001 y=-1.375
]
Position [mm). Charge [pVs) ‘ &
— y=0,575,q=8216523.49 | :
— y=0.525, q=825.76£3.59 | 80 |
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One problem is the electric field profile, that directly affects the measurement:

Bias Voltage [V]
-300.0

2.54

2.04

One solution is to measure the average drift speed from
one detector edge to another (similar to surface injection).

154

1.04

Electric Field [V/um]

0.5+

0.0+

0.0 02 0.4 06 08
y [mm]

|
Do this for many different bias voltages 7



Mobility Result

120 - Mo nh=199.2+7.3, Vgt p =125.3+3.5
uole=126.6i2.5, Vsat’e=113.1il.5
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Electric Field [V/um]

A comparison plot of mobility results from ‘Pernegger (JAP)’, ‘Pomorski (PSS)’ and ‘IJS Ljubljana’ can be found in the Backup.
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Electric Field Measurement

%x=-24.001

Position [mm). Charge [pVs)
— y=0,575 q=8216523.49
— y=0,525, q=825.76£3.59
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For every averaged waveform in a y-scan we look
at the rising edge of the pulse.

4.5 30.0 23 35.0 375 60.0 623 65.0
Time [ns)

Run: 78 (x=7.599, y=-1.17, 2=-6.0)

”-
The integral of the rising edge (red square) is a
| I A /R gral of the rising edge (red square)
0 Va7 s vaV : 0 measure for the immediate carrier drift after the
"‘ ‘\".’1 \‘ .A."' “‘
GRS 0.\\ X, laser pulse.
S 1 0,‘0 0‘0‘000\‘0 AT
E VAN A AN =
Al WORKKIOR,
g ® \\‘ XX NS
g .—‘ > ot

KA )

n'o'ow,l
AV, Drift distance only 20 — 40um during rising time.
5000 %025 %050 %0.7% 5100 51.2% 5150 5175 52.00 -> ignoring carrier tl’apping

Time [ns)
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Electric Field Measurement

no trapping
- Ay . . e>§' ; . ! A .. Amplification
Ie,h A €o Ne,h Ve, w €, .- electron charge

N, .. number of e,h pairs
(constant in first order)
Ve, -- avg. drift speed of e&h
W .. weighting field (=1/thickness for 2
parallel infinite 2D electrodes)

Uo,n=199.2+7.3, Ve p = 125.3%3.5

1201 110 e=126.6=2.5, Vos e = 113.1+1.5
HoE
< (E) =
100 4 Varift (E) HoE

1+ —
Vsat

80

Drift Speed [um/ns]

| from data | scaling | Mobility model

prompt

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Electric Field [V/um]

Use ‘Bisection Method’ to solve for E with the constraint that:

d
VBias = fo E dy
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Results

Approximate focal position: 1.0 mm (from front edge)

x [mm]

Electric field [V/um]

Electric Field [V/um]
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Electrical field map at
constant bias voltage
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Electrical field profiles at
constant bias voltage

1 Bias Voltage [V]
—— -300.0
~+ -400.0
i -500.0
[ A -600.0
YA —— -700.0
/Y
/ 0
AN
0.0 0.2 0.4 0.6 0.8
y [mm]

Electrical field profiles at different
bias voltages for the same position
- does not vary much with electric
field
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Future Studies: Measurements of 3D pCVD Diamond Detectors

3 o
-

Parameters

Cell size: 150pm x 100pm
Bias voltage: +45V

Laser pulse Energy: 0.6 nJ

-0.10 ¢

-0.12
-0.14
E -016
- ~0.18
-0.20

~0.22

-8.200 -8.17% -8.150 -8.12% -8.100 -B.O7S -8.0%0 -8.025%
x [mm]

Charge [pVs]
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Conclusions

v' Edge-TCT proofed to be a viable option for sCVD (and pCVD) diamond detectors

v" We have a fully automated and working setup to measure

v" The analysis techniques were worked out together with people from Ljubljana (Marko Mikuz
and Gregor Kramberger)

Outlook

o Find the origin of rate dependence in irradiated sCVD diamonds

o Is there a correlation between dislocations/lattice defects and the electric field in the sensor?
o Do the measurements change at different temperatures?

o How does the electric field change under a strong (3-source over time?
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Detector Simulation with KDetSim
Example: Charge injection example along a linear path

-400V

T %
2 -
B holes
laser beam (2200,300) = (2300, 400) MIP Track
m.
- electrons
<%
o 0 00 1500 2006 2500 3000 350 e a0
Total Charge GND
g : | _ _ _ ,
- 22_1'“ . ..No RC filter applied! Simulation allows to model signal’s
,,:J (1[I total shape:
E L holes * Injection along a laser beam line
safgnnnncane e | electrons * No space charge
200 o L O RO -+ Difusion = on
085  No RC filter
= * No trapping
| T e e ece e o maw ok
holes =7.7 um/ns i

electrons =5.8 ym/ns




Detector Simulation
Effect of the electric field close to the edge of the metallization

4150 4200 4250 4300 4200 4300 4400

Effects due to non-uniform electric fields become apparent close to the edge of
the metallization.

Holes Holes
251 Electrons 251 Electrons
Sum —— Sum ——
2 2
3 3
L L
o 15 o 15
o o
—_ —_
© I}
< I
(@] @]
T 1T T 1T
-+ -+
o o
[ [
0.5} E 0.5}
0 0
1 1 1 1 1 1 1 1 1 1 1 1
-1 0 1 2 3 4 5 6 0 2 4 6 8 10 12 14

Time [ns] Time [ns]



Space Charge Experiments with KDetSim

The goal was to find a space charge distribution that would resemble the waveforms seen in reality.

Another way to modify the signal shape is

with space charge

—> cubic space charge distribution
- Injection along a line

- No RC filtering

- No trapping

4 — DM
030 Y
=== KDet Sim
£

y=50um

Very preliminary!

Amplitude [a.v.)

Time [ns)

04

o
w

Amplitude [a.u.)
o

(=]
-

0.0

Neff

Cubic toy space
charge model!

(\ y=450|~1m ——- KE);-l Sim

Very preliminary!

slowly falling

Time [ns)
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drift velocity [um/ns]

Comparison of Mobility Results

120 A
100 A
80 - P
60
40 A
Pernegger JAP: holes
Pernegger JAP: electrons
PSS Pomorski: holes
20 A PSS Pomorski: electrons
Ljubljana: holes
Ljubljana: electrons
edgeTCT: holes
o4 5 e edgeTCT: electrons

0.0 0.5 1.0 1.5 2.0 2.5
electric field [V/um]



Other Projects

In-House Sensor Making

Procedure for making strip- and pad-detectors developed at ETH’s FIRST cleanroom
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Order of Photon Absorption

Purely quadratic dependence between beam power and signal - 2 PA

Signal [a.u.]

Fit Function: p0 - xP! + p2
x2/NDF =1.892/11
pO0 = 31.89 = 3.01
pl = 2.07 + 0.10
p2 = 0.04 + 0.06
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