Diamond Edge-TCT

60

Christian Dorfer, ETH Zurich 7th ADAMAS Workshop, Vienna, 13-14 December 2018

The Transient Current Technique

Such setup is able to measure:

- total collected charge versus injected charge \rightarrow charge collection efficiency
- drift speed and mobility of electrons and holes
- charge carrier lifetimes

Different sources of excitation possible: α -, β -sources, sub-bandgap lasers, ...

Advantages of Edge-TCT over traditional TCT

Multi-Photon Absorption Laser Edge-TCT solves those problems by:

- ✓ generate charges in a selected position with micrometer precision
- ✓ control the amount of injected charge through varying laser pulse energy
- \checkmark directly measure the electric field
- $\checkmark\,$ trigger on the laser pulse
- ✓ do 3D scans of the sensor bulk, which is not possible with sub bandgap laser TCT

Working Principle of Edge-TCT

Extractable Quantities:

- electric field (independent of trapping) \rightarrow space charge
- trapping times
- saturation velocity
- mobility of electrons and holes
- •

Setup at ETH Zurich without electric shielding and light-tight box

Charge Carrier Generation

Key Characteristic: Localized generation of charge carriers by multi-photon absorption

Very dense spatial and timed packing of photons required to have two photons 'in the same place at the same time'!

→ Focal Point of Femtosecond Laser

7

Electronic Band Diagram of Diamond

1-, 2-, and 3-photon absorption through indirect and direct bandgap

required energy = 7.3 eV / 170 nm2-photon absorption: $E_v = 3.65 \text{ eV} / 340 \text{ nm}$ 3-photon absorption: $E_v = 2.43 \text{ eV} / 510 \text{ nm}$

required energy $\approx 5.47 \text{ eV}$ / 226 nm (minus phonon contribution and exciton energy) 2-photon absorption: $E_{\nu}\approx 2.74$ eV / 453 nm

- photon energy **3.1 eV** (400 nm)
- 0.1-5 nJ pulse energy eq. to $2^{*}10^{8}$ 10¹⁰ photons/pulse
- 1 kHz repetition rate

Beam Characterization

Result from beam profiling with the knife-edge technique

Better focusing \rightarrow higher opening angle of the beam \rightarrow smaller possible depth of scan.

Basic Optics Refraction/Reflection

When light from an optically thin medium enters into a optically thick one the beam refracts toward the normal. – Snell's law

Charge Carrier's Generation Volume Theoretical prediction of voxel volume with current lens setup

Selected sCVD Diamond Sample

The results shown in the following slides stem from measurements on this diamond

- bought from Element 6 (through DDL)
 - Poor CCD performance
 requires high field (0.7 V/µm) to collect full charge
- thickness 540 µm
- Not irradiated
- pad metallized by Rutgers University (TiW sputtered with shadow mask) (we usually do Cr-Au ourselves)
- metallization distance from edge ≈400 µm (new: 150 µm)
- 2 edges polished

Presented Results

Waveforms

Charge Collection Map

5 waveforms at x=const. and y=300 ÷ 500µm

The collected charge at every scan point can be calculated as

$$Q = \int_{t_a}^{t_b} I(x, y, z, t) dt$$

where t_a and t_b denote the integration times, and were usually chosen to be 0-200ns.

Mobility Measurement

The mobility describes the relationship between drift speed of the carriers and the electric field.

This is how it was measured:

1) Find the edges of the sensor:

By plotting the charge of several y-scans (red curve=average) the edges can be fitted with complementary error functions.

2) At a given voltage inject charges at different y-positions and measure their drift time by fitting the resulting current pulses

3) Speed Measurement

By fitting leading and trailing edge of the pulses the drift time can be extracted. Naturally the drift speed is *drift distance / drift time*.

One problem is the electric field profile, that directly affects the measurement:

One solution is to measure the average drift speed from one detector edge to another (similar to surface injection).

4) Extrapolation
 5) Error Propagation ..

Do this for many different bias voltages

Mobility Result

A comparison plot of mobility results from 'Pernegger (JAP)', 'Pomorski (PSS)' and 'IJS Ljubljana' can be found in the Backup.

Electric Field Measurement

hit positions

For every averaged waveform in a y-scan we look at the rising edge of the pulse.

The integral of the rising edge (red square) is a measure for the immediate carrier drift after the laser pulse.

Drift distance only 20 – 40 μ m during rising time. → ignoring carrier trapping

Electric Field Measurement

Use 'Bisection Method' to solve for **E** with the constraint that:

$$V_{Bias} = \int_0^d E \, dy$$

Results

Future Studies: Measurements of 3D pCVD Diamond Detectors

Conclusions

- ✓ Edge-TCT proofed to be a viable option for sCVD (and pCVD) diamond detectors
- \checkmark We have a fully automated and working setup to measure
- The analysis techniques were worked out together with people from Ljubljana (Marko Mikuž and Gregor Kramberger)

Outlook

- Find the origin of rate dependence in irradiated sCVD diamonds
- Is there a correlation between dislocations/lattice defects and the electric field in the sensor?
- Do the measurements change at different temperatures?
- o How does the electric field change under a strong β -source over time?

Detector Simulation with KDetSim

Example: Charge injection example along a linear path

Detector Simulation

Effect of the electric field close to the edge of the metallization

Effects due to non-uniform electric fields become apparent close to the edge of the metallization.

Space Charge Experiments with KDetSim

The goal was to find a space charge distribution that would resemble the waveforms seen in reality.

Comparison of Mobility Results

Other Projects In-House Sensor Making

Procedure for making strip- and pad-detectors developed at ETH's FIRST cleanroom

Order of Photon Absorption

Purely quadratic dependence between beam power and signal \rightarrow 2 PA

