Analysis

Re

Conclusio

ETH Institute for Particle Physics

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Signal Behaviour of pCVD Diamond Pad Detectors Depending on Incident Particle Flux

ADAMAS Workshop

Michael Reichmann

27th November 2017

M. Reichmann (ETHzürich)

Diamond Pad Detectors

27th November 2017 1 / 21

Table of cor	ntents		

Motivation

2 Test Site & Setup

3 Analysis

4 Results

6 Conclusion

Motivation		

Motivation

Motivation		
Motivation		

- \bullet innermost layers \rightarrow highest radiation damage
- ullet current detector is designed to survive ${\sim}12\,month$ in High-Luminosity LHC
- completely new regime of particle flux $O(GHz/cm^2)$
- $\bullet \ \rightarrow R/D$ for more radiation tolerant detector designs and/or materials

Motivation		
Motivation		

- \bullet innermost layers \rightarrow highest radiation damage
- ullet current detector is designed to survive ${\sim}12\,month$ in High-Luminosity LHC
- completely new regime of particle flux $\mathcal{O}\left(\text{GHz/cm}^2\right)$
- $\bullet \ \rightarrow R/D$ for more radiation tolerant detector designs and/or materials

Diamond as Detector Material:

- advantageous properties
 - radiation tolerant
 - isolating material
 - high charge carrier mobility

Motivation		
Motivation		

- \bullet innermost layers \rightarrow highest radiation damage
- ullet current detector is designed to survive ${\sim}12\,month$ in High-Luminosity LHC
- completely new regime of particle flux $\mathcal{O}\left(\text{GHz/cm}^2\right)$
- $\bullet \ \rightarrow R/D$ for more radiation tolerant detector designs and/or materials

Diamond as Detector Material:

- advantageous properties
 - radiation tolerant
 - isolating material
 - high charge carrier mobility
- investigation of the rate effect in various detector designs:
 - $\blacktriangleright\,$ pad \rightarrow full diamond as single cell readout of the whole signal \rightarrow shown here
 - pixel \rightarrow diamond sensors on state-of-the-art pixel chips
 - \blacktriangleright 3D \rightarrow pixel detector with clever design to reduce drift distance

Test Site & Setup		

Test Site & Setup

	Test Site & Setup		
Test Site			

- High Intensity Proton Accelerator (HIPA) at PSI
- beam line PiM1
- ullet positive pions ($\pi^+)$ with momentum of 260 MeV/c
- \bullet tunable particle fluxes from $\mathcal{O}\left(1\,\text{kHz/cm}^2\right)$ to $\mathcal{O}\left(10\,\text{MHz/cm}^2\right)$

	Test Site & Setup		
Setup			

Figure: Modular Beam Telescope

- 4 tracking planes \rightarrow trigger (fast-OR) with adjustable effective area
- diamond pad detectors in between tracking planes
- low time precision of fast-OR trigger
- fast scintillator for precise trigger timing $ightarrow \mathcal{O}\left(1\,\mathsf{ns}
 ight)$

Test Site & Setup		

Schematic Setup

- PSI DRS4 Evaluation Board as digitiser for the pad waveforms
- global trigger: coincidence of two telescope planes closest to DUTs and scintillator

	Test Site & Setup		
Pad Datactors			

- building the detector: cleaning, photo-lithography and Cr-Au metallisation
- gluing to PCBs in custom built amplifier boxes
- connecting to low gain, fast amplifier with $\mathcal{O}(5 \text{ ns})$ rise time

	Analysis	

Analysis

	Analysis	

Waveforms

- most frequent peak (\sim 70 ns): signal from triggered particle
- other peaks originate from particle of other bunches
- $\bullet\,$ resolve bunch spacing of PSI beam: ${\sim}19.8\,\text{ns}$
- $\bullet\,$ signals in in pre-signal bunch forbidden $\rightarrow\,$ noise extraction

	Analysis	

- define signal region: $\sim \pm$ 10 ns around peak of the triggered signal \rightarrow [60 ns, 80 ns]
- signal: finding the peak in the signal region and integrate around it [-4 ns, 6 ns]
- pedestal: integrate with same lenght (10 ns) in the centre of the pre-trigger bunch [40 ns, 60 ns]

		Analysis	
Signal To I	Noise Ratio		

- optimise SNR by scanning the integral width in both directions
- flat plateau around the the FWHM of the waveform peak

	Results	

Results

- noise distribution agrees well with Gaussian even at high rates
- extract noise by taking the sigma of the Gaussian fit
- noise similar for scCVD and pCVD diamond

• signal gets corrected by the mean of the noise (baseline offset)

• pCVD signal smaller and smeared by different regions in the diamond

- flat signal distribution in scCVD
- signal response depending on region in the pCVD

	Results	

Currents

- \bullet typical rate scans for ${\sim}30\,h$ with rates up to ${\sim}20\,MHz/cm^2$
- beam induced current clearly visible
- low leakage currents (<30 nA) at a bias voltage of $-1000 \text{ V} (2 \text{ V}/\mu\text{m})$

		Results	
Rate Studies			

Rate Scan of II6-B2 in October 2015

- systematically checking several up and down scans
- pumping required in the beggging to reach stable pulse height
- random scans to rule out systematic effects

	Results	

Rate Studies in Non-Irradiated scCVD

- scCVD as reference in all beam tests
- all scans scaled to 1
- scCVD diamond shows now rate dependence within the measurement precision

	Results	

Rate Studies in Irradiated pCVD

- all scans scaled to 1
- pulse height very stable after irradiation
- $\bullet\,$ noise stays the same of: $\,\sigma\approx\,$ 4.9 au

		Conclusion

Conclusion

		Conclusion
Conclusion		

- built beam test setup to characterise the rate behaviour of diamond pad detectors
- pCVD diamond show different signal response depending on the position in the diamond
- nonirradiated scCVD show no rate dependence
- $\bullet\,$ detectors with irradiated pCVD diamond sensors can be built which have a rate dependence below 2 % up to a flux of 20 MHz/cm²

		Conclusion

Acknowledgements

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

THE OHIO STATE UNIVERSITY

The RD42 Collaboration

Del Fin