

SCCVD DIAMOND MEMBRANE RADIATION DETECTORS FOR RADIOBIOLOGICAL APPLICATIONS

6th ADAMAS Workshop, Zagreb 27/11/2017 | Pomorski Michal

APPLIED PHYSICS LETTERS 103, 243106 (2013)

An ultra-thin diamond membrane as a transmission particle detector and vacuum window for external microbeams

V. Grilj,^{1,a)} N. Skukan,¹ M. Pomorski,² W. Kada,³ N. Iwamoto,⁴ T. Kamiya,⁴ T. Ohshima,⁴ and M. Jakšić¹ ¹Division of Experimental Physics, Ruđer Bošković Institute, 10000 Zagreb, Croatia ²CEA-LIST, Diamond Sensors Laboratory, Gif-sur-Yvette F-91191, France ³Division of Electronics and Informatics, Faculty of Science and Technology, Gunma University, Kiryu, Gunma 376-8515, Japan ⁴Takasaki Advanced Radiation Research Institute, Japan Atomic Energy Agency (JAEA), Takasaki, Gunma 370-1292, Japan

It took some time for experimental realization in radiobiology.....

Cell micro-irradiation with MeV protons counted by an ultra-thin diamond membrane

Philippe Barberet^(1,2), Michal Pomorski⁽³⁾, Giovanna Muggiolu^(1,2), Eva Torfeh^(1,2) Gérard Claverie^(1,2), Cédric

Huss^(1,2), Samuel Saada⁽³⁾, Guillaume Devès^(1,2), Marina Simon^(1,2) and Hervé Seznec^(1,2)

(1) Université de Bordeaux, Centre d'Etudes Nucléaires Bordeaux Gradignan (CENBG), 33175 Gradignan, France

(2) CNRS, UMR5797, Centre d'Etudes Nucléaires Bordeaux Gradignan (CENBG), 33175 Gradignan, France

(3) CEA-LIST, Diamond Sensors Laboratory, Gif-sur-Yvette F-91191, France

St

Ceatech

INTRO

... going to be published in December APL 2017...

6th ADAMAS workshop, Zagreb 27/11/2017 | Pomorski Michal | 2

Localized molecular damage in cells with focused / collimated radiation (lasers, UV microspots, X-rays, charged-particles - protons, a, HI)

Study of radiation effects at sub-cellular level:

- \rightarrow Visualization of the cellular/molecular response
 - \rightarrow Dynamical study of the cellular response
 - ightarrow DNA damage and repair kinetics

Information on:

oncogenic transformation, micronuclei formation, genetic instability low dose effects, micro-tracks models → hadron therapy models

AIFIRA FACILITY

Beamlines @ AIFIRA

3.5 MV Singletron accelerator (HVEE)
Ions: p, d and a-particles; E<3.5MeV
2 microbeam lines - 1 dedicated to cells

PIXIE wine dating

Radiobiology micro-beam line @ AIFIRA Facility, CENBG, Bordeaux

Micro-beam Focusing ~1μm (fwhm) Electrostatic scanning: -high throughput (<100μs) - few mm² scan -geometrical patterns Fluorescence microscopy:

Targeting the cells
 Observing early cellular response (time lapse)

List CEALECH EXTERNAL MICROBEAMS

... Precise information about the dose (or number of ions) is required ...

- statistics: $N \rightarrow error sqrt(N)$, ok for 1000 ions
 - \rightarrow impossible for single particle irrad.

• thin transmission detectors (thin plastic scintillators, thin semi-conductors, gas detectors) *those are too thick for MeV a-particles ...*

300 nm BNCD membrane SEE yield spectra BNCD membrane 1 BNCD membrane 2 SIN.

BNCD diamond membrane detector based on secondary electron emission (SEE):

100% efficient for a-particles microbeam, but not for protons.....

Sci Rep. 2017; 7: 41764

universite

Solution for p: Solid-state 'active' vacuum window ionization chamber

RADIOBIOLOGY – MEMBRANES PERFORMANCE

Instrumentation aux limites 2016

Active solid-state ionization chamber vacuum window for low energy ion counting (non-electronic grade scCVD)

list Ceatech

- mechanical robustness
- radiation hard, compact, no maintenance
- VIS transparency (dark field microscopy)

2.8 µm scCVD membrane with ITO electrical contacts as active VIS transparent vacuum window

vacuum tight scCVD membrane detector

6th ADAMAS workshop, Zagreb 27/11/2017 | Pomorski Michal | 6

MEMBRANES PERFORMANCE

list

External 3 MeV p beam properties after 2 and 3μ m diamond active window @ 100 μ m distance

CARNOT

universite

The U2OS cells expressing fluorescence from XRCC1-GFP (single strand DNA breaks repair), 3min after p irradiation

Exactly 100 protons per irradiation point, delivery steered by the scCVD diamond membrane detector

6th ADAMAS workshop, Zagreb 27/11/2017 | Pomorski Michal | 10

A 100% efficient (protons) active vacuum window for radiobiological studies. Allows perfect dosimetry during irradiation of living cells.

Detectors installed at AFIRA for routine irradiations

Outlook:

- single protons irradiations of C. elegance
- collaboration with the community members

universite

Commissariat à l'énergie atomique et aux énergies alternatives Institut List | CEA SACLAY NANO-INNOV | BAT. 861 – PC142 91191 Gif-sur-Yvette Cedex - FRANCE www-list.cea.fr

Établissement public à caractère industriel et commercial | RCS Paris B 775 685 019