



#### SINGLE CRYSTAL CVD DIAMOND MEMBRANE MICRODOSIMETERS FOR HADRON THERAPY

ADAMAS2017 Zagreb 28/11/2017 | Pomorski Michal michal.pomorski@cea.fr



#### list <sup>Clatech</sup>

# **INTERESTS FOR MICRODOSIMETRY COMMUNITY**

A slide from the opening lecture of MICROS2017 17<sup>th</sup> International Symposium on Microdosimetry By H.G. Menzel (5<sup>th</sup> November 2017)



#### Microdosimetric community seems to be waiting for diamond based sensors !

ADAMAS2017 Zagreb 27/11/2017 | Pomorski Michal | 2

CARNOT

universite



- 1) Introduction
- 2) Concept and fabrication
- 3) Charge transport with p, C microbeams
  - a. micro SV definition
  - b. charge collection efficiency
  - c. radiation hardness
- 4) Preliminary LET for 100 MeV proton beam







### HADRON THERAPY

#### **Photons distribution**



#### **Protons distribution**





- > 120 hadron therapy centres worldwide (increasing);
- > 100 000 patients treated;
- operating clinical proton therapy centres in France:
   Orsay, Nice, Caen;
- > ARCHADE : first carbon therapy centre in France;
- an intense field of research activity including new methods of treatment (mini and microbeams, FLASH).









**same dose** but **different LET** thus various biological effectivness

Double-strand DNA breaks



single a-particle irradiation

- RBE (Relative Biological Effectiveness) of protons is uncertain : limits the efficiency of treatments;
- strong correlation between a microdosimetric quantity (i.e. spatial distribution of energy deposition by single particle at cellular level) and RBE : LET (linear energy transfer) and biological effects of charged particles in tissues are related;
- > measurement of LET is difficult : today no detector is available in clinical routine.

#### Simple dosimetry is not enough to assure radiation quality in hadron therapy

ADAMAS2017 Zagreb 27/11/2017 | Pomorski Michal | 5

CARNOT



# **RADIATION QUALITY - MICRODOSIMETRY**

'MICRODOSIMETRY is a methodology that involves the measurement or calculation of stochastic energy deposition distributions in a micron size sensitive volume (SV) within any arbitrary mixed radiation field.'



# **MICRODOSIMETRY IN HADRON THERAPY**

#### Tissue Equivalent Proportional Counter (TEPC)

list

Ceatech



+ a 'gold standard' + sensitive (internal amplification) + tissue-equivalence, radiation hard - size (not really microscopic SV, wall effect) - rate issue

- maintenance (gas flow)

#### Silicon solid-state microdosimeters



A. Rosenfeld, NIM 2015

- + compact device
- + multiple 'real' µSVs
- + it's Si easy for micro-fabrication
  - tissue equivalence (?)
  - radiation hardness (?)

? Can diamond join the advantages of both, and get rid of their pitfalls ?



# list Ceatech

### WHY DIAMOND?



Large band-gap (5.5eV) semiconductor

A solid-state ionization chamber (soon a proportional chamber(?))

more tissue equivalent (Z=6) and radiation hard (43 eV)



- + no leakage current and no need for p-n junction
- + fast drift velocity for e-h
- + low capacitance
- + high electrical breakdown (> 1000 V/ $\mu$ m)
- + VIS light and temp. insensitivity





- high ~13 e-h/eV lower signal
- high density, excitons pulse height defect
- it's diamond (for instance pls. forget 6' wafers)

universite

since 2002 high purity electronic grade CVD diamond available commercially



Characterization of a novel diamond-based microdosimeter prototype for radioprotection applications in space environments. IEEE Transactions on Nuclear Science, 59 (6), 3110-3116. 

ADAMAS2017 Zagreb 27/11/2017 | Pomorski Michal | 9

71

CEA LIST



### **MICRODOSIMETRY IN HADRON THERAPY**



existing diamond microdosimeters prototypes







Tor Vergata

lab grown scCVD diamond Real device

#### 4 MeV C microbeam CCE mapping



#### Pulse-height spectra @ OV bias voltage



J. Appl. Phys. 118, 184503 (2015); doi: 10.1063/1.4935525

- problematic to create multiple  $\mu$ SVs

CARNOT

CEA LIST

universite

## **DIAMOND MEMBRANE MICRODOSIMETER CONCEPT**

list

Ceatech

scCVD diamond membrane p+ and intrinsic diamond drift CB ••••• 1.8V 30-60 µm few mm Ef p-i-m VB 000000 drift μSV to DAQ ionization CSA 10-50 µm Q CCE ~ 100% m-i-m intrinsic diamond diffusion only > 10 µm . . . . . . 1-3 μm CB Е Ef recombination m-i-m p-i-m 000000 VB GND electronic grade diamond bulk boron-doped diamond thin layer CCE → 0% Q electrical contacts (metal or carbon based)

Charge transport @ OV





# DIAMOND MEMBRANE MICRODOSIMETER PROTOTYPES

ElementSix electronic grade single crystal CVD diamond samples



## **CHARGE TRANSPORT CHARACTERIZATION – IBIC**



list

Ceatech



#### CS electronics



preamp.: Amptek 250 CoolFet Shaping time.: 500 ns local DAQ

#### $\Delta E + E$ configuration





# **IBIC – 2.5 MEV PROTON MICROBEAM**

#### STIM (Si downstream)



![](_page_13_Figure_4.jpeg)

\*STIM - scanning transmission ion microscopy

#### diamond signal @ OV

![](_page_13_Figure_7.jpeg)

![](_page_13_Figure_8.jpeg)

![](_page_13_Picture_10.jpeg)

![](_page_14_Picture_0.jpeg)

# **IBIC - 2.5 MEV PROTON MICROBEAM**

![](_page_14_Picture_2.jpeg)

diamond signal @ OV

![](_page_14_Figure_4.jpeg)

![](_page_15_Picture_0.jpeg)

### **IBIC – 16.6 MEV CARBON MICROBEAM**

![](_page_15_Picture_2.jpeg)

STIM (Si downstream) 700 Jm diamond pulse height [a.u.] 300 000 0 0 0 Si pulse height [a.u.] \*STIM - scanning transmission ion microscopy ADAMAS2017 Zagreb 27/11/2017 | Pomorski Michal | 16

diamond signal @ OV

![](_page_15_Figure_5.jpeg)

![](_page_15_Picture_6.jpeg)

![](_page_16_Picture_0.jpeg)

![](_page_16_Picture_1.jpeg)

#### m-i-m 'parasitic signal' inverted polarity

![](_page_16_Figure_3.jpeg)

Higher signals at the edges  $\rightarrow$  strain some areas with zero PH

![](_page_17_Picture_0.jpeg)

#### **IBIC – 16.6 MEV CARBON MICROBEAM**

![](_page_17_Picture_2.jpeg)

UNIVERSITE

![](_page_17_Figure_3.jpeg)

![](_page_18_Picture_0.jpeg)

![](_page_18_Picture_1.jpeg)

16.6 MeV C (microbeam)

![](_page_18_Figure_3.jpeg)

~80% CCE @ 0V (0.45 V/µm built-in) C

solution: use of thinner membranes for high LET i.e. 1.8 V / 1  $\mu{\rm m}$  ~100% CCE

~100% CCE @ 0V (0.3 V/μm built-in) p, α

![](_page_19_Picture_0.jpeg)

High flux C (16.6 MeV) microbeam continuous irradiation of one  $30 \times 30 \mu m \mu SV$  (all spectra measured @ 0V)

![](_page_19_Figure_2.jpeg)

no change: Voc, spectrum shape, peak FWHM, dark current,  $\mu$ SV geometry

even better results expected for thinner membranes (shorter drift path; higher E)

ADAMAS2017 Zagreb 27/11/2017 | Pomorski Michal | 20

universite

# **List** SIGNAL FORMATION – TRANSIENT CURRENTS

![](_page_20_Figure_1.jpeg)

fast signals (clearly RC limited, 1mm<sup>2</sup> contacts area) contact surface optimization  $\rightarrow$  << 1 ns FWHM + high amplitude

ADAMAS2017 Zagreb 27/11/2017 | Pomorski Michal | 21 🏅

CARNOT

universite

![](_page_21_Picture_0.jpeg)

#### Institute Curie Proton therapy Center (Orsay, France)

![](_page_21_Picture_2.jpeg)

Proton beamline for intracranial treatments 100 MeV p

80 mm variable thickness solid-water phantom

300  $\mu$ m SV diamond microdosimeter prototype

![](_page_21_Figure_6.jpeg)

institut**Curie** 

**DIAMOND MEMBRANE MICRODOSIMETER-SUMMARY** 

scCVD diamond membranes have a great potential for solid-state microdosimetry

st

ceatect

- o full CCE (p,a) @ OV, well-defined  $\mu$ SV,  $\Delta$ E spectra, fast
  - radiation hard (preliminary C data)
  - First LET measurements in clinical p beam (promising)

#### Issues to be addressed soon:

- $\mu$ SV geometry optimization: 3D, implantation, thickness homogeneity
  - pulse-height defect for high LET (C)
    - dedicated electronics
  - 'real' LET measurements (mixed fields)

![](_page_22_Picture_10.jpeg)

#### list **DIAMIDOS COLLABORATION – CO-AUTHORS** Ceatech

DE LA RECHERCHE À L'INDUSTRIE

Philippe Bergonzo, Dominique Tromson, Izabella Zahradnik CFA-LIST

Thierry Pourcher, Joel Herault CEA-DRF, Antoine Lacassagne Center

![](_page_23_Picture_4.jpeg)

![](_page_23_Picture_5.jpeg)

Ludovic de Marzi IC-CPO, Orsay

![](_page_23_Picture_7.jpeg)

 Philippe Barbaret

 CENBG, Bordeaux

Natko Skukan, Ivan Sudić, Milko Jaksic RBI, Zagreb, Croatia

![](_page_23_Picture_10.jpeg)

![](_page_23_Picture_11.jpeg)

Wataru Kada, T. Kamiya, S. Onoda, T. Ohshima Gunma University, QST Takasaki, Japan

![](_page_23_Picture_14.jpeg)

![](_page_24_Picture_0.jpeg)

![](_page_24_Picture_1.jpeg)

DiamFab for growing excellent quality p+ diamond homoepitaxial layers <u>www.diamfab.eu</u>

![](_page_24_Picture_3.jpeg)

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 654168

![](_page_24_Picture_5.jpeg)

# III Thank you very much for your kind attention III

![](_page_24_Picture_8.jpeg)

Commissariat à l'énergie atomique et aux énergies alternatives Institut List | CEA SACLAY NANO-INNOV | BAT. 861 – PC142 91191 Gif-sur-Yvette Cedex - FRANCE www-list.cea.fr

Établissement public à caractère industriel et commercial | RCS Paris B 775 685 019

# **MICRODOSIMETRY IN HADRON THERAPY**

15 cm

Photons distribution

list

Ceatech

![](_page_26_Picture_2.jpeg)

Dose

0 cm

![](_page_26_Figure_3.jpeg)

Depth

![](_page_26_Figure_4.jpeg)

![](_page_26_Figure_5.jpeg)

same dose but different LET thus various biological effectiveness

CARNOT

universite

- > RBE (Relative Biological Effectiveness) of protons is uncertain : limits the efficiency of treatments;
- > strong correlation between a microdosimetric quantity (i.e. spatial distribution of energy deposition by single particle at cellular level) and RBE : LET (linear energy transfer) and biological effects of charged particles in tissues are related;
- > measurement of LET is difficult : today no detector is available in clinical routine.

Challenges: single particles, pulse-height, low-signals, high rates, radiation damage

17<sup>th</sup> International Symposium on Microdosimetry, Venice, Italy 10/11/2017 | Pomorski Michal | 27