

DEVELOPMENT OF PIXELATED DIAMOND FOR A PORTABLE NEUTRON IMAGER

LYNDE Clément | 6th ADAMAS Workshop | 27th November 2017

F. CARREL⁽¹⁾, V. SCHOEPFF⁽¹⁾, M. POMORSKI⁽²⁾, D. TROMSON⁽¹⁾, Z. EL BITAR⁽³⁾, J. VENARA⁽⁴⁾, M. BEN MOSBAH⁽⁵⁾

- (1) CEA, LIST, SENSORS AND ELECTRONIC ARCHITECTURES LABORATORY, 91191 GIF-SUR-YVETTE, FRANCE
- (2) CEA, LIST, DIAMOND SENSORS LABORATORY, 91191 GIF-SUR-YVETTE, FRANCE
- (3) INSTITUT PLURIDISCIPLINAIRE HUBERT CURIEN/IN2P3/CNRS, STRASBOURG, FRANCE
- (4) CEA, DEN, 30207 BAGNOLS-SUR-CÈZE, FRANCE
- (5) CEA, DEN, 13115 SAINT-PAUL-LEZ-DURANCE, FRANCE

1. CONTEXT 2. CODED-APERTURE IMAGING 3. WHY TIMEPIX ? 4. WHY DIAMOND ? **5. SIMULATED NEUTRON IMAGER** 6. CONCLUSIONS

1. CONTEXT

CODED-APERTURE IMAGING
 WHY TIMEPIX ?
 WHY DIAMOND ?
 SIMULATED NEUTRON IMAGER
 CONCLUSIONS

list Ceatech

RADIATION IMAGING PRINCIPLE

Radiation image

Superimposition of the two images

- Nuclear industry and Homeland Security applications
 - Decommissioning, waste management and radiation protection
 - Non-proliferation of nuclear material

 Gamma imaging systems are currently available at a industrial level: iPIX, ASTROCAM 7000HS, H-Polaris

CHALLENGE FOR NEUTRON IMAGING

- Use of the neutron signature :
 - Make up for some limitations of gamma imaging (presence of gamma shield)
- Neutron imaging still under investigation :
 - Efficiency or portability improvements are still required for direct applications in nuclear industry
- Some limitations formed strong technological challenges :
 - Compactness
 - Exposure time

Development of a portable neutron imager

2. CODED-APERTURE IMAGING **3. WHY TIMEPIX ?** 4. WHY DIAMOND ? **5. SIMULATED NEUTRON IMAGER** 6. CONCLUSIONS

Principle of coded-aperture imaging

Encoding of the fast neutron emission thanks to coded mask

CARNO

CEA LIST

universitė

ONE OF THE SELECTED NEUTRON DETECTOR

2. CODED-APERTURE IMAGING 3. WHY TIMEPIX ? 4. WHY DIAMOND ? **5. SIMULATED NEUTRON IMAGER** 6. CONCLUSIONS

Modified schemas based on C. Granja et al., Planetary and Space Science, Volume 125, June 2016, Pages 114-129

- Semiconductor detector
- 256 × 256 pixels

Signal induced by charged particles
 Localization of the interaction

CARNO

CEA LIST

universitė

Based on pattern of clusters and deposited energy

C. Granja and S. Pospisil, Advances in Space Research, Volume 54, Issue 2, 15 July 2014, Pages 241–251

(1) Modified schema based on P. Masek et al, Journal of Instrumentation, Volume 8 C01021, January 2013

list

Ceatech

(1) Modified schema based on P. Masek et al, Journal of Instrumentation, Volume 8 C01021, January 2013

list

Ceatech

list

Ceatech

²⁵²Cf source Total number of clusters = 352 250 200 150 Pixel 100 50 100 **Pixel** 200 0

Lithium fluoride deposited by chemical vapor

Paraffin film

→ Possibility to identify charged particles with Timepix

5

4

3

2

1

0

list

→ Possibility to identify charged particles with Timepix

LYNDE Clément | 6th ADAMAS Workshop | 27th November 2017 | 16

Pixel

Pixel 2. CODED-APERTURE IMAGING 3. WHY TIMEPIX ? 4. WHY DIAMOND ? **5. SIMULATED NEUTRON IMAGER** 6. CONCLUSIONS

List DIAMOND AS THE DETECTION SUBSTRATE FOR TIMEPIX

- Sensitivity for fast neutrons
- Low sensitivity for gammas
- Semiconductor properties

- Higher energy collection
- Higher spatial resolution

(1) Modified schema based on P. Masek et al, Journal of Instrumentation, Volume 8 C01021, January 2013

scCVD diamond

list

Ceatech

Based on pulse shape analysis

Analysis based on C. Weiss, 5th ADAMAS Workshop, 2016

list

Ceatech

CARNO

CEA LIST

universite

scCVD diamond

list

Ceatech

→Alpha (neutron): F < 1,25
→Electron (gamma): F > 1,35

scCVD diamond

list

Ceatech

Neutron/gamma

FWHM (neutron pulse)	Ballistic center	Holes drifting	Electrons drifting	
Mean (ns)	3,46	5,89	8,05	
Standard deviation (ns)	0,17	0,19	0,16	
Deviation from the expected value (ns)	0,02	0,09	0,26	≤ 3%

→ Possibility to detect and identify neutrons with diamond

2. CODED-APERTURE IMAGING **3. WHY TIMEPIX ?** 4. WHY DIAMOND ? **5. SIMULATED NEUTRON IMAGER** 6. CONCLUSIONS

MODELING

list

Ceatech

Rank 5 MURA coded aperture

Monte-Carlo simulations

Neutron source

²⁵²Cf

Coded aperture

Chemical composition: Polyethylene

Thickness: 3 cm

Diamond

Pixel matrix: 128 × 128 (16384) pixels

Surface of diamond: 1.408 cm × 1.408 cm

Thickness of diamond: 300 μm

Equivalent to a 3 hours acquisition with a ²⁵²Cf source with a emission of 76×10^6 neutron/s (~32 µg)

Raw image

Decoded image

Raw image

Equivalent to a 11 seconds acquisition with a 252 Cf source with a emission of 76×10^6 neutron/s (~32 µg)

120 100 23 cm 80 Pixel 60 40 20 100 120 20 80 40 60 23 cm **Pixel**

Decoded image

Same conditions but the source is off centered by

 $\vec{v} = (5,5)$ cm

LYNDE Clément | 6th ADAMAS Workshop | 27th November 2017 | 27

CEA LIST

- Possibility to localize a neutron source with a pixelated diamond
- Possibility to localize a neutron source even with relatively low statistic
- Possibility to localize an off centered source

First design for the neutron imager with a diamond substrate

2. CODED-APERTURE IMAGING **3. WHY TIMEPIX ?** 4. WHY DIAMOND ? **5. SIMULATED NEUTRON IMAGER** 6. CONCLUSIONS

list ^{Ceatech}

Conclusions

- Verification of Timepix capacity to identify particles
- Verification of diamond capacity to detect neutrons
- First design for the neutron imager

Perspectives

- 1. Bond a pixelated diamond to a Timepix readout chip
- 2. Locate and identify neutron interactions
- 3. Prototype a portable neutron imager

THANKS FOR YOUR ATTENTION

Commissariat à l'énergie atomique et aux énergies alternatives Institut List | Centre CEA SACLAY | BAT. 516 91191 Gif-sur-Yvette Cedex - FRANCE www-list.cea.fr

Établissement public à caractère industriel et commercial | RCS Paris B 775 685 019

• Path 1: Timepix detector and converter

• Path 2: Timepix and diamond substrate

• Path 3: Scintillator and SiPM matrix

- Scintillator and SiPM matrix
 - Organic scintillator (liquid or plastic) with gamma/neutron discrimination properties
 - Matrix of Silicon PhotoMultipliers (SiPM)

Principle of Geiger-Mode Avalanche PhotoDiode (GM-APD)

Plastic scintillator and SiPM matrix

