CNS, The University of Tokyo

The ultrafast dE-ToF single crystal diamond detector

Olga Beliuskina

6th ADAMAS Workshop, Zagreb

NS

November 27 – November 28, 2017

- motivation
- problems and requirements
- results
- pulse height defect in sc diamonds
- summary and outlook

Motivation

Problems and Requirements

- MNT reactions at the Coulomb barrier energies are a tool to study the north-east region of the nuclear chart
- low energies(about 5~10MeV/u)=>

short ranges (typical example: Pb-like of 5MeV/u ~ 50um in Si) require thin detectors of few tens um thickness

radiation hardness

our goal: ΔE-ToF telescope particle identification membrane dE-start + mosaic E-stop sc CVD diamond detectors

membrane is the thin detector of few um thickness

first step: experimental study of t, E,of the sc (results are in the following) to get the best resolution **Simultaneously**

Experimental Setup at HIMAC

Beam parameters: ¹³²Xe (230MeV/u) ¹⁶O (200MeV/u) setup in the air beam intensity: I=25mm • from 1kHz up to 1MHz

• pc: Polycrystalline CVD diamond

Crystal size : 30×30×0.2 mm3

• Pad design

- Effective area: 28×28 mm2
- Side A: 1 pad (4 readouts)
- Side B: 4 strips (8 readouts)
 - for correction of position dependence

sc: Single crystal CVD diamond 4 mm x 4 mm x 140 um

S. Michimasa et al., NIM B 317 (2013) 710

Scheme of the electronics

Energy: CTC Fujidiamond TDC V1290 Timing: High speed discriminator Iwatsu TAC ORTEC ADC Iwatsu

PAs: Cividec 40dB, Cividec CSA, Caen A1423B

Time resolution versus energy deposit

Time resolution versus energy deposit

S. Michimasa et al., NIM B 317 (2013) 710
 A. Stolz et al. / Diamond & Related Materials 15 (2006) 807–810

Energy resolution versus energy deposit

Scheme of the electronics

w/o PA

¹³² Хе	σ, MeV	FWHM / ΔΕ, %		σ,ps w/o correction	σ, ps w/ correction
All A	2 V/um				
786	19	5.7	A	35	12
945	140	35	N.	127	47
	1 V/um				
786	26	7.6		37	14

Comparisons of PHD in the sc diamond and the Si

O. Beliuskina et al., Eur. Phys. J. A (2017) 53: 32 DOI 10.1140/epja/i2017-12223-8

Summary

- Best timing and energy resolutions: 12 ps and 2%
 PHD was studied. It is significant in diamonds and has to be taken into account.
- next:
 - to get best energy resolution
 - –membrane timing/energy tests
 - dE-ToF tests

Thank you for the attention!