Outline

• Neutron signatures in sCVD diamond
• Signal analysis in real-time
• Applications
Diamond Detectors

Synthetic chemical vapor deposition diamond:

• Solid-state detector.
• Little impurities (N < 5 ppb, B < 3 ppb).
• Thermal robust.
• Radiation hard.

Uniquely suited for diagnostics in rough environments like fission and fusion reactors.
Detecting neutrons with diamond detectors
Thermal neutrons

External converter needed: ^6Li, ^{10}B, ^{235}U, ...
Fast neutrons

Diamond sensor serves as neutron converter.
Background considerations

- Neutron interactions in surrounding materials \((n,\gamma), (n,p), (n,a), \ldots\)
- In-beam \(\gamma\) from the neutron source.
- ...
Current signals in sCVD diamond
Equivalent circuit diagram

Schockley-Ramo Theorem

\[I = q \cdot \frac{v_{\text{drift}}}{d} \]
Signal shapes in sCVD

Homogeneous ionization (MIP, γ):

\[E = \frac{u}{d} \]

\[R \]

\[u \]

\[v_b \]

\[v_h \]

\[A [V] \]

\[t [\text{ns}] \]
Signal shapes in sCVD

Point-like ionization:

\[E = \frac{u}{d} \]

\[R \]

\[A \text{ [V]} \]

\[0 \quad 0.05 \quad 0.1 \quad 0.15 \quad 0.2 \quad 0.25 \quad 0.3 \]

\[-4 \quad -2 \quad 0 \quad 2 \quad 4 \quad 6 \quad 8 \quad 10 \quad 12 \quad 14 \]

\[t \text{ [ns]} \]
Signal shapes in sCVD

Point-like ionization:

\[E = \frac{u}{d} \]

\[R \]

\[u \]

\[v_e \]

\[v_n \]

\[A [V] \]

\[t [ns] \]
Signal shapes in sCVD

Point-like ionization:

\[E = \frac{u}{d} \]
Signal shapes in sCVD

Point-like ionization:

\[E = \frac{u}{d} \]

\[R \]

\[v_e \]

\[v_h \]
Signal shapes in sCVD

Point-like ionization:

\[E = \frac{u}{d} \]

New definition:

Ballistic Centre

\[t_{d,h} = t_{d,e} \]
Simulation: point-like ionization
Experiment: point-like ionization

The graph shows the voltage A over time t in nanoseconds for different drift mechanisms. The voltage peaks at different times, indicating the distinct arrival times of h^+ and e^- drifts, with h^+ having a faster arrival time compared to e^-. The ballistic center is also marked with an arrow, showing the theoretical arrival time without drift effects.
Requirements

1. sCVD diamond sensor.
2. RF-shielded detector design.
3. Low detector capacitance (RC time constant).
4. 2 GHz Broadband Amplifier.
5. Real-time data acquisition and analysis.

With these ingredients, background reactions to neutron measurements can be rejected.
Signal analysis
Selection criteria

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area A</td>
<td>Deposited energy in the detector</td>
</tr>
<tr>
<td>Base width w_b</td>
<td>Drift time</td>
</tr>
<tr>
<td>FWHM</td>
<td>Signal shape and drift time (if no high-energy neutrons)</td>
</tr>
<tr>
<td>Form factor F</td>
<td>Signal shape</td>
</tr>
</tbody>
</table>
Form-factor
Distinguishing by shape

- **Form-factor**

\[F = \frac{\text{calculated area}}{\text{measured area}} = \frac{h \cdot w_b}{A} \]

Rectangles: \(F = 1 \)

Triangles: \(F = 2 \)
Distinguishing by drift time

Measurement with 14 MeV neutrons

Counts

© CIVIDEC
Distinguishing by drift time

- Measurement with 14 MeV neutrons
- Selection criteria $F < 1.4$

Counts

10^4

10^3

10^2

0 2 4 6 8 10 12 14 16

w_b [ns]

© CIVIDEC
Three application examples:

1. Thermal neutrons
2. Fast neutrons
3. Mixed field (reactor core)
Three application examples:

1. Thermal neutrons
2. Fast neutrons
3. Mixed field (reactor core)
ATI, Vienna, Austria

- Measurement at a thermal neutron beam line at the TRIGA Mark-II reaction.

- 6Li converter for thermal neutron conversion.

- High γ-background.

\[
\begin{align*}
\text{n} & \rightarrow \gamma \\
6\text{Li} & \rightarrow \alpha \\
\text{sCVD} &
\end{align*}
\]
Recorded spectrum without PSA

Selecting the relevant signals

96% γ-Background Rejection Efficiency
Three application examples:

1. Thermal neutrons
2. Fast neutrons
3. Mixed field (reactor core)
EC-JRC, Geel, Belgium

- Measurement at the Van de Graaff accelerator of EC-JRC in mono-energetic neutron beam.
- sCVD sensor used as converter.
- Proton recoil background.
Measurement of 14.3 MeV neutrons

Selecting the relevant signals

Selecting the relevant signals

99.95% Background Rejection Efficiency
21.7% Efficiency
Three application examples:

1. Thermal neutrons
2. Fast neutrons
3. Mixed field (reactor core)
• sCVD Diamond + ^6Li neutron converter.
• In the core of the thermal reactor CROCUS.

• n-γ discrimination?
• Can the fast neutrons be identified?
Total Spectrum

Photons

$^6\text{Li}(n,\alpha)^3\text{H}$

Fast Neutrons

Fast Neutrons

PRELIMINARY
On-going research at EPFL Lausanne

Christina Weiss
Conclusions
Conclusion

• Current signals in diamond detectors reflect information on the initial charge-distribution profile in the diamond sensor.

• This allows to identify signals from different origins (MIP or cp entering the sensor, versus nuclear reactions inside the sensor).

• Via pulse-shape analysis the background in neutron measurements can be reduced significantly.

• This allows to extract the neutron interactions, even from measurements with significant background.
Thank you for your attention!

References:
Acknowledgements to

P.J. Bryant, M. Cerv.

TRIGA Mark-II, ATI Vienna, Austria:
E. Jericha, E. Klapfer, H. Schachner.

EC-JRC Geel, Belgium:
F. Belloni, W. Geerts, A. Plompen, P. Schillebeeckx.

Crocus, EPFL Lausanne, Switzerland:
P. Frajtag, M. Hursin, V.P. Lamirand.

EUFRAT for sponsorship.