

Neutron Diagnostics GSI, 15.12.2016

Christina Weiss CIVIDEC Instrumentation

Outline

- Neutron signatures in sCVD diamond
- Signal analysis in real-time
- Applications

Diamond Detectors

Synthetic chemical vapor deposition diamond:

- Solid-state detector.
- Little impurities (N < 5 ppb, B < 3 ppb).
- Thermal robust.
- Radiation hard.

Uniquely suited for diagnostics in rough environments like fission and fusion reactors.

Detecting neutrons with diamond detectors

Thermal neutrons

External converter needed: ⁶Li, ¹⁰B, ²³⁵U, ...

Fast neutrons

Diamond sensor serves as neutron converter.

- Neutron interactions in surrounding materials (n,γ), (n,p), (n,a), ...
- In-beam γ from the neutron source.

Background often dominating -> should be minimized or even <u>rejected</u>!

Current signals in sCVD diamond

Equivalent circuit diagram

Schockley-Ramo Theorem

$$I = q \cdot \frac{v_{drift}}{d}$$

Homogeneous ionization (MIP, γ):

Cividec Simulation: point-like ionization

Experiment: point-like ionization

Requirements

- 1. sCVD diamond sensor.
- 2. RF-shielded detector design.
- 3. Low detector capacitance (RC time constant).
- 4. 2 GHz Broadband Amplifier.
- 5. Real-time data acquisition and analysis.

With these ingredients, background reactions to neutron measurements can be rejected.

Signal analysis

Parameters

Selection criteria

Parameter	Information
Area A	Deposited energy in the detector
Base width w _b	Drift time
FWHM	Signal shape and drift time (if no high-energy neutrons)
Form factor F	Signal shape

Form-factor

• Form-factor $F = \frac{calculated\ area}{measured\ area} = \frac{h \cdot w_b}{A}$

Distinguishing by drift time

Distinguishing by drift time

Three application examples:

- 1. Thermal neutrons
- 2. Fast neutrons
- 3. Mixed field (reactor core)

Three application examples:

1. Thermal neutrons

- 2. Fast neutrons
- 3. Mixed field (reactor core)

ATI, Vienna, Austria

- Measurement at a thermal neutron beam line at the TRIGA Mark-II reaction.
- ⁶Li converter for thermal neutron conversion.
- High γ-background.

Recorded spectrum without PSA

Ref: P. Kavrigin et al., NIMA 795, 88-91 (2015).

Selecting the relevant signals

Ref: P. Kavrigin et al., NIMA 795, 88-91 (2015).

Three application examples:

- 1. Thermal neutrons
- 2. Fast neutrons
- 3. Mixed field (reactor core)

EC-JRC, Geel, Belgium

- Measurement at the Van de Graaff accelerator of EC-JRC in mono-energetic neutron beam.
- sCVD sensor used as converter.
- Proton recoil background.

Cividec Measurement of 14.3 MeV neutrons

Ref: P. Kavrigin et al., Eur. Phys. J. A 52, 179 (2016).

Selecting the relevant signals

Ref: P. Kavrigin et al., Eur. Phys. J. A 52, 179 (2016).

Selecting the relevant signals

Ref: P. Kavrigin et al., Eur. Phys. J. A 52, 179 (2016).

Three application examples:

- 1. Thermal neutrons
- 2. Fast neutrons
- 3. Mixed field (reactor core)

EPFL Lausanne, Switzerland

- sCVD Diamond + ⁶Li neutron converter.
- In the core of the thermal reactor CROCUS.
- n-γ discrimination?
- Can the fast neutrons be identified?

Total Spectrum

Photons

6 Li(n, α) 3 H

Fast Neutrons

Fast Neutrons

Conclusions

Conclusion

- Current signals in diamond detectors reflect information on the initial charge-distribution profile in the diamond sensor.
- This allows to identify signals from different origins (MIP or cp entering the sensor, versus nuclear reactions inside the sensor).
- Via pulse-shape analysis the background in neutron measurements can be reduced significantly.
- This allows to extract the neutron interactions, even from measurements with significant background.

Thank you for your attention!

References:

- 1. C. Weiss et al., Eur. Phys. J. A (2016) 52: 269
- 2. P. Kavrigin et al., NIMA (2015) 795, 88.
- 3. P. Kavrigin et al., Eur. Phys. J. A (2016) 52: 179

Acknowledgements to

P.J.Bryant, M. Cerv.

TRIGA Mark-II, ATI Vienna, Austria: E. Jericha, E. Klapfer, H. Schachner.

<u>EC-JRC Geel, Belgium:</u> F. Belloni, W. Geerts, A. Plompen, P. Schillebeeckx.

> <u>Crocus, EPFL Lausanne, Switzerland:</u> P. Frajtag, M. Hursin, V.P. Lamirand.

> > EUFRAT for sponsorship.

www.cividec.at

