

TEM study of dislocations in diamond-on-iridium and first results of ELO experiments

5th ADAMAS Diamond Workshop 2016

2016-12-15 - 2016-12-16

Michael Mayr, Oliver Klein, Martin Fischer, Stefan Gsell and Matthias Schreck

Heteroepitaxial diamond growth

CIPATIA ET COM

Etch-pit pattern reorganization and growth surface

Dark-field optical micrograph of etch-pit patterns (inset: FFT)

Michael Mayr, 5th Adamas workshop @ GSI, 2016-12-15

Motivation

During growth:

- formation of distinct surface pattern
- Iateral redistribution of dislocations
- striations visible in cross-section SEM

Cross-section SEM (surface marked in color)

As shown in: [13] M. Mayr et al., Phys. Status Solidi A 211, 2257 (2014). [14] M. Mayr et al., Phys. Status Solidi A 212, 2480 (2015).

IMPORTANT QUESTIONS:

- How are dislocations tilted/redistributed?
- Interaction with surface features?
- Consequences of dislocational tilt?

Michael Mayr, 5th Adamas workshop @ GSI, 2016-12-15

Dislocation density reduction by extended growth

Dislocation density reduction by extended growth:

As shown in:

C. Stehl et al. Appl. Phys. Lett. 103, 151905 (2013)

TEM methods – LACBED

Large angle convergent beam electron diffraction (LACBED): overlap of reciprocal with direct image

exact estimation of **surface angle** with respect to the **lattice: ZOLZ Kikuchi lines** (red dashed)

TEM methods – WBDF Burgers vector analysis

Possible interaction mechanisms

Reduction mechanism:

(a)
$$\mathbf{b}_1 = -\mathbf{b}_2$$
 Annihilation

b)
$$b_3^2 < b_1^2 + b_2^2$$
 Fusion

(c) $b_3^2 > b_1^2 + b_2^2$ Scattering

Fusion: In principle all interactions within ½<110> (including resulting vector!) possible; otherwise: **scattering**.

Fusion of dislocations (examples):

★ $45^{\circ} + 90^{\circ} \rightarrow 45^{\circ}$ dislocation i.e. $\frac{1}{2}[101] + \frac{1}{2}[-110] \rightarrow \frac{1}{2}[011]$

Defect development – early growth stage

WBDF *cross-section* images close to iridium surface identical sample area 004 (a) and 400 (b) reflection.

- Formation of bundles (green markings).
- ✤ Higher density of 45° dislocations (statistically: 2x).
- Highly effective reduction mechanism directly after nucleation.
- Higher efficiency for 90° (pure edge type) dislocation reduction.

Dislocations at growth surface

34µm growth (100ppm N₂ in the gas phase \rightarrow step-bunching with **terrace/riser** structure).

rrace

 T_1 T_0

- bending of dislocations in step-flow direction (at grey dashed line)
- ✤ high inclination angle (23° away from [001]!).

WBDF analysis (riser area)

WBDF images (same spot) 004 (a) and 400 (b) reflection.

green: $\frac{1}{2}[\pm 10\pm 1]$ (45°)red: $\frac{1}{2}[0\pm 1\pm 1]$ (45°)yellow: $\frac{1}{2}[\pm 1\pm 10]$ (90°)

glide

climb

Dislocations of all types are present.

 All tilt angles are identical; no dependency on accompanying glide or climb process.

Nitrogen-free growth

12µm growth (**no** N₂ in the gas phase \rightarrow lack of terrace/riser structure, **smooth surface**).

WBDF image (cross-section) 004 reflection \rightarrow all 45° dislocations visible.

- General tilt towards off-axis direction again, but much smaller (2° 13°).
- Three groups with different but discrete (!) tilting angles observed (2°, 6° and 13°).

QUESTION: DEPENDENCE ON BURGERS VECTOR?

Nitrogen-free growth (WBDF analysis)

WBDF analysis 004 (a,c) and 400 (b,d) reflection.

- All and only 45° dislocations with b = ½[±10±1] show high tilt angle of 13°
 → effective glide process.
- Dislocations with $\mathbf{b} = \frac{1}{2}[0\pm1\pm1]$ perform effective **climb**, lower tilt angles,
 - \rightarrow change towards compressive / tensile **stress** (sign of Burgers vector).
- Two different tilt angles for effective climb.

 \rightarrow suggestion: different barriers for tensile or compressive stress? (final decision not possible with the present TEM technique)

M. Fischer et al., Appl. Phys. Lett**. 100**, 041906 (2012)

Summary (TEM)

- In early growth stage efficient reduction of dislocations by annihilation or fusion.
- Growth with N₂ → step-bunching with terrace/riser growth areas; discrete bending by a high tilt angle (up to 20°) towards step-flow direction in riser areas; tilt angle shows no dependence on the dislocation type.
- Diamond grown without N₂ → no terrace/riser formation; discrete tilt angles for 3 different groups of 45° dislocations.
- 45° dislocations with the highest tilt angle are characterized by an effective glide movement; all the other dislocations' tilting corresponds to an effective climb, connected with generation of intrinsic stress during growth.
- N₂ in the process gas is suspected to level out the differences for dislocation tilting.

Epitaxial Lateral Overgrowth (ELO)

- Growth phenomenon known since 1965 (Tausch, Lapierre)
- Application for synthesis of high-quality epitaxial films

Method used in III-V semiconductor growth, i.e. by **Shuji Nakamura** for the production of blue light-emitting diodes with extended lifetime

(dislocation density reduction of up to 4 orders of magnitude)

Shuji Nakamura (physics nobel prize 2014)

photograph by: Ladislav Markuš

ELO – formation of a closed layer

Under construction preliminary results

sequence of an ELO process on a heteroepitaxially grown diamond sample; etching reveals resulting defects

appearance of defects in a very early growth stage

ELO – formation of a closed layer

Under construction preliminary results

sequence of an ELO process on a heteroepitaxially grown diamond sample; etching reveals resulting defects

appearance of defects in a very early growth stage

ELO – formation of a closed layer

Under construction preliminary results

sequence of an ELO process on a heteroepitaxially grown diamond sample; etching reveals resulting defects

appearance of defects in a very early growth stage

Early ELO growth experiments

Under construction preliminary results

Testing of different growth parameters and stripe-directions:

patterned growth experiment

Evaluation of stripe direction for optimal overgrowth

Under construction preliminary results

Measuring of stripe width and height shows distinct maxima and minima.

 \rightarrow important for further experiments!

Scaling up – 50 µm stripe distance

Under construction preliminary results

Is it possible to grow a closed layer with ~ 50 µm lateral growth?

Yes!

Dislocation densities?

Under construction preliminary results

Threading dislocations revealed by preferential etching:

structured area

border structured/non-structured area

Michael Mayr, 5th Adamas workshop @ GSI, 2016-12-15 p

Summary (ELO)

What have we succeeded in?

- $\checkmark\,$ Demonstration of closed layer formation for stripe distance ~ 50 μm
- ✓ Non-epitaxial crystallites suppression
- ✓ Parasitic nucleation kept low
- ✓ Proof of dislocation manipulation

What's next?

- Estimation of dislocation reduction factor
- Growth of thick detector grade samples
- Electrical characterisation → detector behaviour?

How good can we get?

Michael Mayr, 5th Adamas workshop @ GSI, 2016-12-15 page 23

Thank you for your attention!

Acknowledgements:

Financial support by GSI and EU project Hadron physics III (ADAMAS)

travel and lodging expenses sponsored by EMMI

Study of Strongly Interacting Matter