$^{13}C(n,\alpha_0)^{10}Be$ cross section measurement

P. Kavrigin¹, F. Belloni², H. Frais-Koelbl³, E. Griesmayer¹, A.J.M. Plompen², P. Schillebeeckx², C. Weiss¹

¹CIVIDEC Instrumentation, Vienna, Austria

²EC-JRC, Geel, Belgium

³Fachhochschule Wr. Neustadt, Wr. Neustadt, Austria

December 15th, 2016

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

- Experimental setup
- Simulation of the response function
- Data analysis conditions
- Results
- Conclusions

- 7 MV Van de Graaff accelerator, EC-JRC Geel, Belgium
- Quasi-monoenergetic neutron beam via $T(d,n)^4He$ reaction
- \bullet Deuteron (2 MeV) on Ti/T target
- Neutron energy has angular distribution

Scheme of the experimental setup

Experimental setup (I)

- Van de Graaff facility of the EC-JRC, Geel, Belgium
- Neutron energies: 14.3 MeV and 17.0 MeV
- CIVIDEC B1 Single-Crystal Diamond Detector
 - Thickness 500 μm
 - Active area 4 mm by 4 mm
 - Bias electric field 1 V/ μ m
 - Diamond detector was used as a sample and as a sensor
- CIVIDEC C2 Broadband Amplifier
 - Analogue bandwidth 2 GHz
 - Equivalent input current noise 0.4 μA
- LeCroy Waverunner oscilloscope
- Dedicated pulse-shape analysis for background rejection

• Cross section of $^{13}C(n,\alpha)^{10}Be$ was measured relatively to $^{12}C(n,\alpha)^9Be$

Experimental setup (II)

Simulation of the response function

P.Kavrigin (CIVIDEC)

ADAMAS 2016

December 15th, 2016 7 / 28

Neutron beam parameters

P.Kavrigin (CIVIDEC)

Neutron interactions in diamond

Reaction	Q [MeV]	E _{th} [MeV]
$^{12}C(n,el)^{12}C$	0	0
${}^{13}C(n,\alpha){}^{10}Be$	- 3.836	4.134
$^{12}C(n,\alpha)^9Be$	- 5.702	6.182
$^{12}C(n,n+2\alpha)^4$ He	- 7.275	7.886
${}^{12}C(n,p){}^{12}B$	- 12.587	13.645
${}^{12}C(n,d){}^{11}B$	- 13.732	14.887

Geant4 simulation: (n,el)

P.Kavrigin (CIVIDEC)

December 15th, 2016 10 / 28

Geant4 simulation: $(n, 3\alpha)$

P.Kavrigin (CIVIDEC)

Geant4 simulation: (n, α)

P.Kavrigin (CIVIDEC)

December 15th, 2016 12 / 28

Geant4 simulation: total

P.Kavrigin (CIVIDEC)

December 15th, 2016 13 / 28

Data analysis conditions

Pulse-shape analysis

C. Weiss, "Neutron Diagnostics", ADAMAS 2016

- Fast neutrons interacting in the *ballistic center* produce **rectangular** pulses with a minimum **drift time**
- Pulse **amplitude** threshold allows to remove the spectra below the ${}^{12}C(n, n+2\alpha)^4He$ edge

Results

P.Kavrigin (CIVIDEC)

ADAMAS 2016

э December 15th, 2016

æ

Measurement vs. simulation, 14.3 MeV

P.Kavrigin (CIVIDEC)

December 15th, 2016 17 / 28

Measurement vs. simulation, 14.3 MeV

P.Kavrigin (CIVIDEC)

December 15th, 2016 18 / 28

Measurement vs. simulation, 14.3 MeV

P.Kavrigin (CIVIDEC)

December 15th, 2016 19 / 28

Measurement vs. simulation, 17.0 MeV

P.Kavrigin (CIVIDEC)

December 15th, 2016 20 / 28

The ratio of the ${}^{13}C(n,\alpha_0){}^{10}Be$ and ${}^{12}C(n,\alpha_0){}^{9}Be$ reaction was derived as:

$$\frac{\sigma_{13}}{\sigma_{12}} = \frac{I_{13}}{I_{12}} \cdot \frac{N_{12}}{N_{13}} \tag{1}$$

where I_{12} and I_{13} are the net peak areas corresponding to the two reactions of interest, N_{12} and N_{13} are the fractions of ${}^{12}C$ and ${}^{13}C$ isotopes in diamond.

The ratio of the ${}^{13}C(n,\alpha_0){}^{10}Be$ and ${}^{12}C(n,\alpha_0){}^{9}Be$ reaction was derived as:

$$\frac{\sigma_{13}}{\sigma_{12}} = \frac{I_{13}}{I_{12}} \cdot \frac{N_{12}}{N_{13}} \tag{1}$$

where I_{12} and I_{13} are the net peak areas corresponding to the two reactions of interest, N_{12} and N_{13} are the fractions of ¹²C and ¹³C isotopes in diamond.

Uncertainty estimation:

 Uncertainty of the abundance of ¹³C in diamond (N₁₃/N₁₂) which is 0.3% (M. Berglund, M.E. Wieser, Pure Appl. Chem. 83, 397 (2011)).

The ratio of the ${}^{13}C(n,\alpha_0){}^{10}Be$ and ${}^{12}C(n,\alpha_0){}^{9}Be$ reaction was derived as:

$$\frac{\sigma_{13}}{\sigma_{12}} = \frac{I_{13}}{I_{12}} \cdot \frac{N_{12}}{N_{13}} \tag{1}$$

where I_{12} and I_{13} are the net peak areas corresponding to the two reactions of interest, N_{12} and N_{13} are the fractions of ¹²C and ¹³C isotopes in diamond.

Uncertainty estimation:

- Uncertainty of the abundance of ¹³C in diamond (N₁₃/N₁₂) which is 0.3% (M. Berglund, M.E. Wieser, Pure Appl. Chem. 83, 397 (2011)).
- Statistical uncertainty dominated by the ¹³C(n,α₀)¹⁰Be statistics, with 5.9% at 14.3 MeV, and 4.0% at 17.0 MeV.

The ratio of the ${}^{13}C(n,\alpha_0){}^{10}Be$ and ${}^{12}C(n,\alpha_0){}^{9}Be$ reaction was derived as:

$$\frac{\sigma_{13}}{\sigma_{12}} = \frac{I_{13}}{I_{12}} \cdot \frac{N_{12}}{N_{13}} \tag{1}$$

where I_{12} and I_{13} are the net peak areas corresponding to the two reactions of interest, N_{12} and N_{13} are the fractions of ¹²C and ¹³C isotopes in diamond.

Uncertainty estimation:

- Uncertainty of the abundance of ¹³C in diamond (N₁₃/N₁₂) which is 0.3% (M. Berglund, M.E. Wieser, Pure Appl. Chem. 83, 397 (2011)).
- Statistical uncertainty dominated by the ${}^{13}C(n,\alpha_0){}^{10}Be$ statistics, with 5.9% at 14.3 MeV, and 4.0% at 17.0 MeV.
- Uncertainty of the analysis method dominated by the pulse width selection, which was estimated as 8.3%.

The ratio of the ${}^{13}C(n,\alpha_0){}^{10}Be$ and ${}^{12}C(n,\alpha_0){}^{9}Be$ reaction was derived as:

$$\frac{\sigma_{13}}{\sigma_{12}} = \frac{I_{13}}{I_{12}} \cdot \frac{N_{12}}{N_{13}} \tag{1}$$

where I_{12} and I_{13} are the net peak areas corresponding to the two reactions of interest, N_{12} and N_{13} are the fractions of ¹²C and ¹³C isotopes in diamond.

Uncertainty estimation:

- Uncertainty of the abundance of ¹³C in diamond (N₁₃/N₁₂) which is 0.3% (M. Berglund, M.E. Wieser, Pure Appl. Chem. 83, 397 (2011)).
- Statistical uncertainty dominated by the ${}^{13}C(n,\alpha_0){}^{10}Be$ statistics, with 5.9% at 14.3 MeV, and 4.0% at 17.0 MeV.
- Uncertainty of the analysis method dominated by the pulse width selection, which was estimated as 8.3%.
- Energy resolution of the detector system, which was 168 keV FWHM.

The ratio of the ${}^{13}C(n,\alpha_0){}^{10}Be$ and ${}^{12}C(n,\alpha_0){}^{9}Be$ reaction was derived as:

$$\frac{\sigma_{13}}{\sigma_{12}} = \frac{I_{13}}{I_{12}} \cdot \frac{N_{12}}{N_{13}} \tag{1}$$

where I_{12} and I_{13} are the net peak areas corresponding to the two reactions of interest, N_{12} and N_{13} are the fractions of ¹²C and ¹³C isotopes in diamond.

Uncertainty estimation:

- Uncertainty of the abundance of ¹³C in diamond (N₁₃/N₁₂) which is 0.3% (M. Berglund, M.E. Wieser, Pure Appl. Chem. 83, 397 (2011)).
- Statistical uncertainty dominated by the ¹³C(n,α₀)¹⁰Be statistics, with 5.9% at 14.3 MeV, and 4.0% at 17.0 MeV.
- Uncertainty of the analysis method dominated by the pulse width selection, which was estimated as 8.3%.
- Energy resolution of the detector system, which was 168 keV FWHM.
- The total uncertainty is below 11% for both measurements.

P.Kavrigin (CIVIDEC)

• Cross section ratio:

$$\sigma_{13}/\sigma_{12}$$
=(0.15±0.01) at 14.3 MeV.
 σ_{13}/σ_{12} =(0.17±0.01) at 17.0 MeV.

• Using the evaluated cross section σ_{12} at 14.3 MeV and 17.0 MeV (CENDL-3.1), the derived ${}^{13}C(n,\alpha_0){}^{10}Be$ cross section is:

$$\sigma_{13}$$
=(10.4±1.1) mb at 14.3 MeV.
 σ_{13} =(7.1±0.7) mb at 17.0 MeV.

13 C(n, α_0) 10 Be cross section

P.Kavrigin (CIVIDEC)

13 C(n, α_0) 10 Be cross section

13 C(n, α_0) 10 Be cross section

Conclusions

- ${}^{13}C(n,\alpha_0){}^{10}Be$ cross section was measured relatively to ${}^{12}C(n,\alpha_0){}^{9}Be$.
- Measurement was performed with an sCVD diamond detector using the selective pulse-shape analysis technique.
- The analysis method allowed to reject the high-energetic background, and extract the ${}^{13}C(n, \alpha_0){}^{10}Be$ spectrum.
- Using the evaluated cross section of ${}^{12}C(n,\alpha_0)^9Be$ at 14.3 MeV and 17.0 MeV (CENDL-3.1), the derived ${}^{13}C(n,\alpha_0)^{10}Be$ cross section is:

$$\sigma_{13}$$
=(10.4±1.1) mb at 14.3 MeV.
 σ_{13} =(7.1±0.7) mb at 17.0 MeV.

References

- P. Kavrigin, E. Griesmayer, F. Belloni, A.J.M. Plompen,
 P. Schillebeeckx, C. Weiss, ¹³C(n,α₀)¹⁰Be cross section measurement with sCVD diamond detector, Eur. Phys. J. A 52, 179 (2016)
- C. Weiss, H. Frais-Kölbl, E. Griesmayer, P. Kavrigin, *Ionization signals of diamond detectors in fast neutron fields*, Eur. Phys. J. A 52, 269 (2016).

Thank you for your attention!

Addendum I - Neutron interactions in diamond

Reaction	Q [MeV]	E _{th} [MeV]
$^{12}C(n,el)^{12}C$	0	0
${}^{13}C(n,\alpha){}^{10}Be$	- 3.836	4.134
$^{12}\mathrm{C}(\mathrm{n},\alpha)^{9}\mathrm{Be}$	- 5.702	6.182
$^{12}C(n,n+2\alpha)^4$ He	- 7.275	7.886
${}^{12}C(n,p){}^{12}B$	- 12.587	13.645
${}^{12}C(n,d){}^{11}B$	- 13.732	14.887