

Radiation induced signal degradation in diamond sensor

Florian Kassel, Moritz Guthoff, Anne Dabrowski, Wim de Boer

The beam abort system at CMS (BCML)

Florian Kassel (

The beam abort system at CMS (BCML)

BCML1

> Mounted on BCM carriage

BCML2

Mounted on wheel structure around the beam pipe

beam pipe

Unexpected strong radiation damage at LHC

Decrease of detector efficiency was higher than expected in comparison to lab measurements (RD42)

caused by reduced electrical field in a high rate particle environment ('polarization')

This talk:

Detailed simulation and irradiation studies to understand these plots

Irradiated diamond sensors - Polarization

Diamond polarization a stable configuration?

Depends on trap properties influencing trapping and de-trapping rates.

New approach to understand the severe radiation induced signal degradation by:

Creation of an effective defect model to describe the radiation induced signal degradation of diamond sensors as function of:

- a) Radiation Damage.
- b) Particle Rate environment.
- c) Electric field at which diamond is operated.

Creation of Effective Defect Model based on

- Stepwise irradiation of high quality sCVD diamonds with proton or neutron particles
- Regularly measurements of the diamond polarization in a particle rate environment created by a ⁹⁰Sr source:
 - Modification of the internal electric field as function of exposure time (T_{exp.}) via the TCT technique.
 - > Modification of the charge collection efficiency as function of $T_{exp.}$.

Measurement procedure for TCT/CCE measurements to measure build up space charge as function of exposure time T_{exp}

BRIL

Measurement procedure:

- Exposing diamond to ⁹⁰Sr source without HV (pumping)
- Fast ramping up of HV and immediately start of TCT measurement (*T_{exp}=0*)
- Data taking over extended time period (*T_{exp}* > 3000s)
- 4. Analyze deformation of TCT pulse as function of exposure time T_{exp}

Florian Kassel

Diamond Irradiation campaign: TCT modification as function of radiation damage

Florian Kassel 巜

Diamond Irradiation campaign: TCT modification as function of radiation damage

10 15.12.2015 5th ADAMAS workshop, GSI, Darmstadt

Florian Kassel 巜

Diamond Irradiation campaign:

CCE measurements for different irradiation damages

CCE as function of bias voltage

Measured just after bias voltage ramp (minimize polarization effects) CCE as function of $T_{exp.}$ (E = 0.36 V/µm)

3. Simulation of a diamond detector with SILVACO TCAD

3. Simulation of a damaged diamond detector Input parameters – Quasi 3D simulation y_ Х Two Dimensional: Quasi 3D: Three Dimensional: Correct charge Correct charge Correct charge density density density Correct total charge Correct total charge or Correct total charge Incorrect geometry Correct geometry Incorrect geometry 550 5.0 ns Y axis (µm) Simulation of TCT signal: > Alpha particle hit on top side charge carrier drift through Hole Conc (/cm3) diamond bulk 16.2 10.8 5.45 0.075 -5.3 -21.4 Diamond Aluminum 0 0 r axis (µm) 100

Florian Kassel

BRIL

3. Simulation of a damaged diamond detector Input parameters –Simulated energy depositions

- TCT & CCE hardware setup geometry implemented in Fluka
- Simulation of ⁹⁰Sr and ²⁴¹Am energy deposition in diamond sensor

Florian Kassel

Energy deposition of α and β particles

3. Simulation of a damaged diamond detector Input parameters – Limitation of Hardware

Limited bandwidth of the TCT measurement setup taken into account:
 Limiting component is oscilloscope with a bandwidth of 1GHz
 Simulation results manipulated with Bandwidth filter

3. Simulation of a damaged diamond detector Input parameters

Electron drift 0.15 1000 V () 0.10 0.05 70 V EWHM 0.00 20 10 15 25 0 5 Time (ns) 1000 V Hole drift 0.15Signal () 0.10 70 V 0.00 5 10 15 20 25 0 Time (ns)

TCT measurement of e/h drift

Parameterization of charge carrier drift

- Drift velocity calculated via: v_{e,h}= d/t_{FWHM} with d as diamond thickness
- In agreement with measurement results of M.Pomorski
- Parameterization with Saturation Velocity Model (Caughey and Thomas mobility model)

Definition of traps (recombination centers)

- Radiation damage causes plutoria of defects
- Energy levels and properties of defects poorly known

Creation of an effective defect model:

- 2 deep traps as acceptor and donor (effective recombination center 1)
- 2 Shallow traps as acceptor and donor (effective recombination center 2)

Symmetric properties of effective traps:

- Acceptor and donor energy levels of eRC1 and eRC2 identical
- Electron and hole capture cross section ($\sigma_{e,h}$) of eRC1 identical
- σ_h of eRC2 is 2x increased compared to σ_e

Simulation of the electric field using effective trap model

Simulation follows the measurement procedure:

- 1. Diamond exposed the entire simulation to an ionizing current created by a ⁹⁰Sr source.
- 2. *Pumping:* Diamond exposed to ⁹⁰Sr source for 20min without bias voltage applied.
- 3. Quick ramp up of bias voltage (t<1s) and start of TCT/CCE measurement simulation.
- 4. Probing of electric field, TCT and MIP pulse at different time steps 0s, 300s, ..., 3600s.

Simulation of the electric field modification caused by the effective traps:

- Build up of space charge
- Diamond polarization

3. Simulation of TCT pulse and comparison to measurement result

Diamond operated at an electric field of $E = 0.18 \text{ V}/\mu m$

electron drift hole drift $T_{exp} = 15s$ $T_{exp} = 15s$ 70 70 $T_{exp} = 285s$ $T_{exp} = 285s$ 60 60 $T_{exp} = 2385s$ $T_{exp} = 2385s$ Signal (mV) 20 50 Signal (V) Dashed = Simulation Dashed = Simulation 40 30 20 20 10 10 0 $\mathbf{0}$ 10 20 30 50 10 20 30 50 0 40 40 0 Time (ns) Time (ns)

Radiation damage: $\Phi = 0.9 \times 10^{13} n_{1MeV} \text{ cm}^{-2}$

3. Simulation of TCT pulse and comparison to measurement result

BRIL

Diamond operated at an electric field of $E = 0.36 \text{ V}/\mu m$

Radiation damage: $\Phi = 0.9 \times 10^{13} n_{1MeV} \text{ cm}^{-2}$

Florian Kassel (

3. Simulation of MIP pulse and comparison of calculated CCE to measurement result

BRIL

Diamond operated at an electric field of $E = 0.18 \text{ V}/\mu m$

Radiation damage: $\Phi = 0.9 \times 10^{13} n_{1MeV} \text{ cm}^{-2}$

21

Florian Kassel (

3. Effective Defect Model as function of Radiation Damage

- For each radiation step the trap densities ρ of eRC1 & eRC2 were optimized to the TCT/CCE measurement results.
- > Trap properties like $\sigma_{e,h}$ and energy levels remain unchanged.
- Proton irradiated (#73 and #74) and neutron irradiated (#76) sample in agreement.

Effective Defect Model (eRC) vs. RD42 radiation damage model

BRIL

Diamond sensors simulated/operated at an electric field of 1V/μm.
 Simulation results fitted to analytical RD42 radiation damage model results in:
 k_{eRC} = 8.9 x 10⁻¹⁹ cm²μm⁻¹ vs. k_{RD42} = 6.5 x 10⁻¹⁹ cm²μm⁻¹.

Florian Kassel 巜

Effective Defect Model: Simulation of different electrical fields at which diamond is operated

BRIL

Florian Kassel

Effective Defect Model: Simulation of different electric fields at which diamond is operated

Radiation damage: $\Phi = 1.5 \times 10^{15} p_{24GeV} \text{ cm}^{-2}$

> 42x increased charge carrier recombination (0.36 V/µm)
 > 70x increased charge carrier recombination (0.18 V/µm)
 ...explains the severe reduction in CCD

Effective Defect Model: Different particle rate environments

BRIL

- Simulation for different particle rate environments:
 ⁹⁰Sr = 0.15 GHz/cm³, BCML1 = 2.04 GHz/cm³, BCML2 = 20.4 GHz/cm³
- > Equilibrium of stable polarized diamond state depends on particle rate environment.

Rate dependency of diamond signal !

Florian Kassel

Conclusion

Effective Defect Model is based on:

- 2 deep traps as acceptor and donor (eRC1)
- > 2 shallow traps as acceptor and donor (eRC2)
- Trap density of these 4 effective recombination centers determined as function of radiation damage (n_{1MeV} cm⁻²) by:

 $\rho_{eRC1} \,(\mathrm{cm}^{-3}) = \Phi \cdot (2.52 \pm 0.13) \times 10^{-2} + (9.40 \pm 1.11) \times 10^{11}$ $\rho_{eRC2} \,(\mathrm{cm}^{-3}) = \Phi \cdot (2.15 \pm 0.04) \times 10^{-2} + (6.67 \pm 0.38) \times 10^{11}$

Effective Defect Model successfully describes:

- CCD as function of radiation damage
- CCD as function of electric field at which the diamond is operated
- CCD as function of particle rate environment (Rate dependency!)

Detailed analysis of intrinsic diamond parameters possible like:

Internal electric field configuration, space charge distribution, charge carrier recombination rates and more..

THANK YOU!

BRIL

- To Prof. Lohmann and the CMS group at DESY!
- ➤ To Moritz, Anne and Wim!

sponsored by the:

Federal Ministry of Education and Research

Florian Kassel

BACKUP

29 15.12.2015 5th ADAMAS workshop, GSI, Darmstadt

2. Measuring the electric field with the Transient Current Technique (TCT)

Alpha particles are used to introduce charge carriers at the diamond surface.

2. Measuring the electric field with the Transient Current Technique (TCT)

Alpha particles are used to introduce charge carriers at the diamond surface.

Intermezzo: TCT measurement, polarization and electric field

Florian Kassel

MIP signal for diamond operated at an electric field of E= 0.18 V/µm for different radiation damages

Effective Defect Model: Space charge for different electric fields

Radiation damage: $\Phi = 1.5 \times 10^{15} \text{ p}_{24\text{GeV}} \text{ cm}^{-2}$

Florian Kassel

NIEL and DPA model

Taken from:

M. Guthoff et al., *Simulation of beam induced lattice defects of diamond detectors using FLUKA*, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment **735** (2014) 223–228.

