

Replacement of the Fast Beam Condition Monitor (BCM1F) sensors at CMS

Moritz Guthoff

on behalf of the Beam Radiation Instrumentation and Luminosity project (BRIL) of CMS

15th Dec 2017 5th ADAMAS workshop, GSI, Darmstadt, Germany

Overview

- BCM1F detector
- Performance during 2015 & 2016
- Replacement plans and design modifications.
- Characterizations of new sensors.
 - Leakage current
 - Charge collection
 - Test beam

BCM1F detector concept

- Application:
 - Luminosity measurement
 - Machine induced background measurement (several orders of magnitude below luminosity)
- Concept:
 - Fast particle counter
 - Utilize time of arrival to separate different contributions
- Requirements:
 - Hit counting with 160MHz time binning
 - Sufficient statistical precision at low rate
 - Calibration at low rate (VdM scan)
 - Machine induced background generally low rate
 - Good linearity from low rate to high rate conditions (O(100MHz/cm2))
 - Extrapolate calibration to high rate environment.
 - Low dead time
 - E.g. pulse pileup could lead to train effects.

Sensors and readout

- Detector:
 - 5x5mm² sCVD, 500um thick
 - Two pad metallization to reduce pile up.
- Electronics:
 - Fast preamp
 - 4 channels (2 used)
 - 7ns rise time, 10ns FWHM
 - Analog optical signal transmission
 - Counting: Discrimination + time histogram
 - ADC for pulse shape analysis
 - FPGA based signal processing (under development)

Performance problems

- Erratic currents occur at high rate
 - Reduced HV stability
- Increased problem with radiation fluence.
 - Hypothesis: Charge create at surface defects, electric field increases at surface due to radiation damage induced polarization.
 - Lab tests of removed diamonds are planned to study the cause of the instabilities.
- At end of run many diamonds at 0V, highest ~150V

Tilting the detector

- Benefit of magnetic field on erratic behavior known.
 - Seen in CMS with BCML (pCVD leakage current measurement)
- Hypothesis: Lorentz angle lets charge carriers drift into grain boundaries. Stops current.
- Attempt to tilt current BCM1F with only sCVD diamonds was not successful.
 - 15° should give 980mT perpendicular in a total field of 3.8T
- Replacement system could use pCVD diamonds.

Detector replacement, sensor mix

- BCM1F accessible early 2017
- Decision to replace all front end detectors taken during summer this year.
 - > No time for re-design of the system.
 - Production of identical PCBs launched, received components ~2 weeks ago.
- Sensor options:
 - single-crystal diamonds. Expected to work well un-irradiated, but to degrade quickly.
 - poly-crystalline diamonds. Expected to be more stable (with fluence and rate), but low charge collection.
 - silicon diodes. Unknown performance, FE-ASIC not designed to handle leakage current.
 - Best chance to have working detectors by installing all of the options.

Metallization geometry

- New design:
 - Split pad only on readout side.
 - Round corners
 - Guard ring (passive)
 - More space to edges of the diamond
- Metal:
 - Single pad (HV): Cr/Au made in OSU
 - Split pad (readout): W/Ti made in Princeton

Sensor gluing and HV pad

- HV pads were > 5x5mm².
- Conductive glue spread over the edged
- Like metallizing to the edges
- Smaller HV pad size
- Use different glue (staystik pads)
- Try to avoid leakage over edges

Detector characterizations

- Main stability criteria: low leakage current.
- Good charge collection desired.
- Leakage current tests:
 - Hot Sr90 source (130MBq), illuminating the whole diamond (incl. edges!)
 - Thin PCB plate to absorb low energetic particles.
 - 200V-1h, 500V-2h, 750V-4h, 1000V-4h
- Charge collection.
 - Source (Sr90 37MBq) collimated
 - Measure 500V, 750V, 1000V as function of time
- Only few detectors measured so far. Being worked on at the moment.

CC measurement setup

Current over time measurements

- Stability varies strongly.
- Max HV between ~200V and 1000V.
- Just enough diamonds to equip all places.
 - No margin for selection

Charge collection measurements

- Measure CCD as function of time to make sure efficiency is stabilized.
- CCD > 250um (9000 e-, 1.4fC) above 750V

Test beam

- Test of pCVD diamonds in BCM1F type system.
- Two pCVD diamonds, and one old (two-pad) sCVD diamonds as reference.
- Readout reflects full BCM1F
 system:
 - Analog optical conversion
 - Discriminator + scaler
 - ADC for pulse height analysis

sCVD pulse height

- sCVD shows clear peaks, well separated from noise.
- Difference in peak height is due to efficiency of the optical chain.

- Use sCVD to trigger processing of pCVD data.
 - Self triggering difficult due to high noise
- Noise peak still visible due to imperfect alignment.
 - (some hits in sCVD where there is nothing in the poly)
- Clear peak separated from noise.
 - Can apply threshold for MIP sensitivity -> stable operation expected

Calibration

- Use external test pulse input to calibrate the results
- Use parametric fit to saturating slope
- Can use this to convert peak height to charge collection.

- Use calibration curve to convert peak height to charge.
- Mean at ~ 1.2 fC -> 208 um CCD.
 - Lower than expected, lab measurement showed: ~250-270um

BRI

Potential follow up detector system

- Lifetime of new system:
 - Hopefully lasts until LS3 (2024), then replacement necessary due to CMS phase-2 upgrade.
 - Next chance for access in LS2 (2019). If again performance degradation occurs, intermediate solution necessary.
- Replacement being build at the moment uses very last available spare components.
- Conceptual change necessary
 - No technology for radiation hard analog optical signal transmission available.
 - New system needs to be digital.
 - Should try to exploit available radiation hard (LHC) technologies. Challenging to find suitable FE electronics (needs to be faster than standard 40MHz)

Summary and outlook

- Replacement of BCM1F necessary
 - Only very low HV can be applied to detectors
 - Detector not sensitive to MIPs any more.
 - Strong change in efficiency with radiation fluence
 - Cross calibration to luminosity allows correction, but high correction factors result in high systematic errors.
 - Same system will be re-built (no time and funds for major design improvements)
- Change of detector type:
 - pCVD should be more stable in terms of: leakage current (at least with magnetic field), radiation damage and rate dependence.
 - Smaller metallization area to reduce pulse pileup even further.
 - sCVD installed as reference while they can operate reliably.
 - Maybe improvements to surface processing and gluing allows higher HV than last iteration.
 - Exploring Si diodes as alternative, however system is not designed to handle leakage current.

THANK YOU

Special thanks to: Harris Kagan, Ohio State University Dmitry Hits, ETH Zürich ExtreMe Matter Institute for travel support

BACKUP

Magnetic field and HV stability

- Known effect that magnetic field perpendicular to E-field prevents erratic currents in poly-crystalline diamond.
 - BCML1 profits from CMS magnet, BCML2 does not since it is outside of the field.
- BCM1F build with B parallel to E
 - 2015 experience: detectors have higher HV stability with magnet ON.
 - Have to reduce ~100V when magnet is switched off.
- Can we improve HV stability in BCM1F with tilting sensors?
 - Improvement not expected since sCVD do not have grain boundaries.
 - We tried anyways.....

BCML dark current during magnet ramp. 7th Jul 2015 0.20 10 BCML1 CMS Preliminary 2015 BCML2 Magnetic field 0.1 Current [nA] Magnetic f 0.05 un or d. Aikond 0.00 15:00 13:00 14:00 10:00 11:00 2:00 Time [HH:MM] BCML system, pCVD diamonds, Not from BCM1F!

Tests in magnetic field

- Erratic current behavior has to be tested with source applied.
 - Occurrence of erratic behavior scales with rate environment.
- First attempt: Particles perpendicular to B-field.
 - No particles at detector with B on.
- Second attempt with bigger magnet: particles parallel to Bfield.
 - Higher rate at detector with B on.
- Extremely difficult to make comparative study.

- Used BCM1F sensor rejects (split pad metal) on test PCB (one side glued, one side bonded).
- Electrical and magnetic field oriented perpendicular
- Magnetic field focuses more ionizing particles on diamond -> increased signal current.
 - Faster occurrence of breakthrough, likely due to higher rate environment.
 - No beneficial suppression of erratic currents with magnetic field visible.

Tilting of C-shape

- CMS was opened in YETS2015 to investigate a water leak.
 - Access to BCM/PLT carrier on the +Z end.
- Detectors were removed and a wedge was inserted under BCM1F to create an angle of 15°.
- Unfortunately no clear improvement in HV stability.
 - Detailed HV scans planned, but expectations are low.

Current after irradiation

Zeuthen_2499089-2

Irradiation step 0

Two current symptoms:

- High DC current
 - Almost on all diamonds on one polarity
 - Reduces with irradiation
- "Break through": fast increase in current
 - Very random
 - Some have it more some less, some don't
 - Tends to increase with irradiation.

Measurements at KIT, F. Kassel Irradiation step 1 (03.10.15)

Tests done with source applied Bonded on both sides, no conductive glue applied