

#### ADAMAS 2016 GSI, 15.12.2016

Erich Griesmayer, CIVIDEC Instrumentation





#### "CVD DIAMOND DETECTOR DEVELOPMENT"



#### Since 2009







#### Location





#### Network

## Science Network Cividec

Physikalisch-Technische Bundesanstalt, Germany

Diamond Light Source, Great Britain

CEA Saclay,

France

CERN, Switzerland

École polytechnique fédérale de Lausanne,

Lausanne

National Centre of Scientific Research "Demokritos", Greece EC – Joint Research Center

Belgium

Slovak University of Technology Slovak Republic

> TU Wien, Atominstitut Austria

> > MedAustron, Wiener Neustadt

## Customers





## Customers







### Sold units





#### Production



#### 

E. Griesmayer

Nov. 11, 1993

#### A Proposal for a Novel Ion Beam Detector

A silicon strip detector could be capable of measuring the beam parameters of the AUSTRON ion beam with a very good accuracy. Some main parameters are described here.

The main beam parameters are:

beam intensity
beam position
beam profile

The main questions arising are:

- 1 energy loss of beam
- 2 beam scattering
- 3 detector lifetime (radiation)

#### 1. The detector

The idea is to use a conventional Si strip detector. The detector could be made out of a 4 inch silicon wafer, corresponding to about 10 cm in diameter. The thickness would be about 300  $\mu$ m, the interstrip spacing could be about 200  $\mu$ m. The detector could be manufactured double sided, one plane covering the horizontal coordinate, the other the vertical.

#### 2. Si properties

| Atomic number             | Z=14                                  |
|---------------------------|---------------------------------------|
| Atomic weight             | A=28.09                               |
| Density                   | ρ=2.33 g/cm <sup>3</sup>              |
| Electron mobility (300 K) | $\mu_e = 1350 \text{ cm}^2/\text{Vs}$ |
| Hole mobility (300 K)     | CHART480-cm <sup>2</sup> /Vsmentation |
| Energy per pair (300 K)   | 3.6 eV                                |

#### The Giga-Counter .....



#### 2003 Bloomington



#### 2003 Bloomington



#### 2004 MGH



#### 2016





### Systems



- Charged particles
  - Beam Loss Monitor
  - ToF applications
  - Spectroscopy
- Photons
  - XBPM
  - Gamma diagnostics
- Neutrons
  - Fast neutron diagnostics
  - Thermal neutron diagnostics
  - HT reactor applications



#### LHC DBLM





#### Static operation





#### # of Losses



Time = Phase

Time loss histogram as recorded with the 40 MHz bunch clock signal, 25 ns loss separation, 1.6 ns binning, 1.2 ns time resolution.



## Injection cleaning







Courtesy T. Baer, CERN





Single-bunch instabilities at the end of a squeeze.



#### LHC Cold









## LHC Quadrupole



# Cryogenic Diamond Detector





#### HiRadMat





#### HiRadMat





#### **Detector Response**





#### Linearity



F. Burkart, O. Stein, CERN, Shan Liu, Université Paris-Sud

©CIVIDEC Insrumentation





Courtesy: BTF group Frascati - Luca Foggetta, Paolo Valente, Bruno Buonomo, Claudio di Giulio; F. Burkart, O. Stein, CERN

©CIVIDEC Insrumentation



#### Spectroscopy


#### Resolution





#### Resolution



15.12.2016



#### Pu-238





#### X-Rays



#### The 4Q-Diode









#### XBPM





#### **Readout electronics**







#### Ranges



# **ROSY®** XBPM Application









#### Diffusion



Figure 5: Electron pulse shapes for different voltages

Ref: M. Morgenbesser



#### Diffusion



Figure 11: Drift velocities of electrons for different electric fields

Ref: M. Morgenbesser



#### Beam tests at Diamond Light Source







#### Beamline I24





#### Homogeneity



Courtesy Chris Bloomer, DLS



#### Homogeneity



Courtesy Chris Bloomer, DLS



### 4Q - Homogeneity









Courtesy Chris Bloomer, DLS



#### Edge homogeneity



Courtesy Chris Bloomer, DLS



#### X-Y Scan



Courtesy Chris Bloomer, DLS



#### Linearity





#### Beam spot



Courtesy Chris Bloomer, DLS



#### **Position resolution**



15.12.2016

#### Gamma diagnostics

Nuclear Instruments and Methods in Physics Research A 830 (2016) 391-396



#### Operation of a fast diamond $\gamma$ -ray detector at the HI $\gamma$ S facility

T. Williams<sup>a</sup>, C. N'Diaye<sup>a</sup>, D. Breton<sup>a</sup>, K. Cassou<sup>a</sup>, K. Dupraz<sup>a</sup>, P. Favier<sup>a</sup>, D. Jehanno<sup>a</sup>, V. Kubytskyi<sup>a</sup>, X. Liu<sup>a</sup>, J. Maalmi<sup>a</sup>, A. Martens<sup>a,\*</sup>, Y. Peinaud<sup>a</sup>, A. Stocchi<sup>a</sup>, F. Zomer<sup>a</sup>, E. Griesmayer<sup>b</sup>, P. Kavrigin<sup>b</sup>, M.W. Ahmed<sup>c,d,e</sup>, M. Sikora<sup>c,d</sup>, H.R. Weller<sup>c,d</sup>



<sup>a</sup> LAL, Univ Paris-Sud, CNRS/IN2P3, Université Paris-Saclay, Orsay, France

<sup>b</sup> Vienna University of Technology, Austria

<sup>c</sup> Triangle Universities Nuclear Laboratory, Durham, NC 27708, USA

<sup>d</sup> Physics Department, Duke University, Durham, NC 27708, USA

<sup>e</sup> Department of Mathematics and Physics, North Carolina Central University, Durham, NC 27707, USA

#### ARTICLE INFO

ABSTRACT

Article history:

Operations of a diamond sensor placed in a high average-intensity beam of photons with energies of a

Courtesy Aurélien Martens, LAL



### 7 MeV gammas



**Fig. 1.** Observed signal of a run of 10,000 events collected at a photon beam energy of 3 MeV. The events are corrected for trigger jitters, cross-talk and pedestals. The typical pulse duration is on the order of a few nanoseconds and all the events are well synchronised.





**Fig. 2.** Distribution of the FWHM of the signal candidates for photon beam energies of 2, 3 and 7 MeV in blue squares, black circles and red rhombi, respectively. Only events with single candidates are considered in this figure. The error bars are not shown as they are smaller than the size of the points. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)



#### Neutrons

## PTB Neutron Generator











#### **B7** Fast-Neutron Diamond Detector



#### Frascati Neutron Generator







#### **B14 Diamond Telescope Detector**


## **Demokritos Neutron Generator**









# Proton Recoil Spectrometer





### **Bethe Bloch**





#### **Neutron applications**



## Christina .....

