

Large Area Polycrystalline Diamond Detectors for Online Hadron Therapy Beam Tagging Applications

<u>ML. Gallin-Martel</u>, A. Bes, G. Bosson, J. Collot, D. Dauvergne, L. Gallin-Martel, A. Gorecki, J.-Y. Hostachy, A. Lacoste, S. Marcatili, J-F. Muraz, F. Rarbi, O. Rossetto, M. Yamouni

LPSC Grenoble

M. Fontana, J. Krimmer, E. Testa

IPN Lyon

M. Salomé, J. Morse ESRF

ADAMAS workshop at GSI 15th - 16th December 2016 ML. Gallin-Martel (LPSC Grenoble France) mlgallin@lpsc.in2p3.fr

CAL (Centre Antoine Lacassagne) Nice Dose delivery / incident ionizing particle Cancer treatment using proton beams Dose delivery / incident ionizing particle

18 MV photons

relative

ClaRyS French collaboration

- Time-of-Flight Compton/ collimated gamma cameras
- Beam hodosope

(see GamHadron project M. Pomorski CEA LIST presented at ADAMAS 2012)

Secondary radiation emission from fragmentation is correlated to ion range

Why to develop a beam tagging hodoscope ?

Hodoscope => time of flight measurement at 1 ns to reduce background

ClaRyS French collaboration

Compton camera

IN2P3 : 4 laboratories
CPPM Marseille
IPNL Lyon
LPC Clermont Ferrand
LPSC Grenoble (MoniDiam project)
CREATIS Lyon
> LIRIS Lyon
Centre Antoine Lacassagne Nice

Beam tagging hodoscope development : LPSC MoniDiam project

Existing development :

Array of scintillating fibres coupled to multichannel photomultiplier tubes (PMT).

Foreseen development :

MoniDiam project aims to develop a diamond based hodoscope and its dedicated integrated fast read-out electronics

Limitations :

- Radiation hardness
- PMT count rate capability (10⁷ cps per PMT)
- □ Time resolution 500 ps 1 ns

Diamond Advantages :

- Intrinsic radiation hardness
- Fast signal risetime enables timing precision of a few tens of ps
- Low noise

Beam tagging hodosope specifications

- Proton therapy (Cyclotron IBA/C230 Orsay, Dresden...):
 - Bunch: 1-2 ns
 - □ HF : 9.4 ns
 - □ 200 protons/bunch
- Proton therapy (Synchro-cyclotron Nice S2C2)
 - □ Micro-bunch: 7 ns (16 ns)
 - \Box Milli-bunch: 4 µs (1 ms)
 - □ 10⁴ protons/ micro-bunch
- Carbone therapy (HIT/CNAO):
 - Bunch: 20-40 ns
 - Bunch interval: 200 ns
 - 10 ions/bunch

- Counting rate:
 - 100 MHz for the whole detector
 - □ ~10 MHz per channel
- Time resolution:
 - At the level of 100 ps
- > Spatial resolution:
 - □ 1mm (readout strip)
- Radiation hardness:
 - 10¹¹ protons/cm²/treatment,
 about 20 treatments a day
 =>10¹⁴ protons/cm²/year.

Beam tagging hodosope R&D

- Large area poly-crystalline diamond pc-CVD : 20 x 20 mm² (currently on the shelf)
- Metallization performed at LPSC using the <u>Distributed Microwave Plasmas method</u>
 - □ aluminium disk-shaped surface up to 2016
 - □ strips metallization foreseen in 2017
 - thickness optimization (plasma etching)

A. Lacoste et al., Multi-dipolar plasmas for uniform processing: physics, design and performance, SCi. Technol., 11 pp 407-412, 2002

 50Ω adapted detector holder

Beam tagging hodosope R&D

- Large area poly-crystalline diamond pc-CVD : 20 x 20 mm² (currently on the shelf)
- Metallization performed at LPSC using the Distributed Microwave Plasmas method
 - □ aluminium disk-shaped surface up to 2016
 - □ strips metallization foreseen in 2017
 - thickness optimization (plasma etching)
- Final detector : 15 x 15 cm² mosaic arrangement of stripped sensors => channels >10³
- First prototype in 2019 : 2 x 2 diamond sensors in a mosaic arrangement
- Integrated readout electronic (AMS 180 and/or TSMC 130):
 - Dynamic range: from 7 fC (1 proton of 250 MeV) up to 600 fC (1 carbon ion of 80 MeV/u)
 - □ Fast preamplifier 2 GHz / 40 dB
 - Low walk discriminator
 - □ TDC with a resolution < 100 ps
 - □ spectrometry (single cristals are concerned) and charge integration outputs
- Connectics diamond /PCB :
 - □ wire bonding
 - □etc ...

ML Gallin-Martel LPSC Grenoble

$50\,\Omega$ adapted detector holder

Diamond R&D at LPSC

Large area diamond single crystal for High Luminosity LHC tracker MonoDiam project, started in 2012

Institut Pluridisciplinaire Hubert Curien => Characterization

Laboratoire de Physique Subatomique et de Cosmologie => Functionalization + characterization

Laboratoire des Sciences des Procédés et des Matériaux => Growth

CUBE Laboratoire des sciences de l'ingénieur, de l'informatique et l'imagerie => Functionalization

Characterization of CVD diamond at LPSC (2015-2016)

Diamond 0.45 x 0.45 cm^2x 500 μm sc-CVD E6

Metallization 2 sides Al 50 nm; ϕ 4 mm

Diamond 0.45 x 0.45 cm² x 500 μ m sc-CVD E6

3 cm

 $50 \ \Omega$ adapted detector holder

Characterization of CVD diamond at LPSC (2015-2016)

11

Characterization of CVD diamond at LPSC (2015-2016)

500 V

Diamond

Preamp

Preamp

	500 MHz; 3.	2 GS/	'S
	and the second second second		
· CAC	8-CHANNEL WAVECAT	CHER	•
	он он се он С С С С С С С С С С С С С С С С С С С		ETHERNET
		rfu CEC	

saclay

WaveCatcher

Electrodes

	•	
		Unit
SAMLONG ASIC technology	AMS CMOS 0.35µm	
System number of channels	2, 8, 16, 32, 48, 64	
Power consumption	2.5 (2-ch), 15 (8-ch),	w
	23 (16-ch), 100 (64-ch)	
Sampling depth	1024 / channel	Cells
Sampling speed	0.4 to 3.2	GS/s
Bandwidth	500	MHz
Range (unipolar)	± 1.25 (with full range individual channel offset)	v
ADC resolution	12	bits
Noise	0.75	mV
		rms
Dynamic range	11.5	bits
		rms
Readout time	11 to 66 (depends on number of cells read)	μs
Time precision before	< 20	ps
correction		rms
Time precision after time INL	< 5	ps
correction		rms

ML Gallin-Martel LPSC Grenoble

WaveRunner Lecroy 2 GHz; 10 or 20 GS/s

SAMPLING

& DAQ

12

Measurements with a ⁹⁰Sr source : MonoDiam test bench

^{90}Sr 74 MBq β source

Charge Collection Distance measurement

Measurements with ²⁴¹Am : α source (5.4 MeV)

Measurements with ²⁴¹Am : α source (5.4 MeV)

 $0.5 \times 0.5 \text{ cm}^2 \times 300 \mu \text{m} \text{ pc-CVD}$ Augsburg Univ. heteroepitaxially grown on iridium(courtesy M. Schreck)

15

Measurements with ²⁴¹Am : α source (5.4 MeV)

Electromagnetic shielding box

The box was positioned with micrometric reproducibility at the sample position of the micro-diffraction end station (in air) of the ID21 beamline at European Synchrotron Radiation Facility (ESRF) in Grenoble.

1400 photons de 8.5 keV par bunch

A 8.5 keV photon focused micro-beam with a well-defined time structure was used at the ESRF.

As regards energy deposition in the diamond, in the ESRF 4-bunch mode, the ~100 ps duration X-ray pulses, containing a fixed number of photons varying up to ~1400, spaced at 700 ns intervals, mimic the passage of single ionizing particles

Electromagnetic shielding box

The box was positioned with micrometric reproducibility at the sample position of the micro-diffraction end station (in air) of the ID21 beamline at European Synchrotron Radiation Facility (ESRF) in Grenoble.

Electromagnetic shielding box

The box was positioned with micrometric reproducibility at the sample position of the micro-diffraction end station (in air) of the ID21 beamline at European Synchrotron Radiation Facility (ESRF) in Grenoble.

X-Ray analysis on a surface of 1 mm²

Diamond surface mapping was performed

The grey scale corresponds to the charge efficiency measured by an electrometer

The response of the detector reflects the spatial distribution of the grain boundaries

A factor of 2 of difference is observed between the clearest point and the darkest one

ML Gallin-Martel LPSC Grenoble

Point N^o

Electromagnetic shielding box

The box was positioned with micrometric reproducibility at the sample position of the micro-diffraction end station (in air) of the ID21 beamline at European Synchrotron Radiation Facility (ESRF) in Grenoble.

X-Ray analysis on a surface of 1 mm²

$\begin{array}{c} 60\\ 50\\ 40\\ 30\\ 20\\ 10\\ 0\\ 0\\ 1\end{array}$

 $1 \times 1 \text{ cm}^2 \times 500 \mu \text{m} \text{ pc-CVD}$ Element 6

ML Gallin-Martel LPSC Grenoble

$0.5 \times 0.5 \ \text{cm}^2 \times 300 \ \mu\text{m}$ pc-CVD Augsburg University

$4.5 \times 4.5 \text{ mm}^2 \times 518 \ \mu\text{m} \text{ sc-CVD}$ diamond Element 6

Signal maximum amplitude distribution measured over the 1.5 x 1.5 mm² surface

$4.5 \times 4.5 \text{ mm}^2 \times 518 \ \mu\text{m} \text{ sc-CVD}$ diamond Element 6

12.70 250 Constant 53.07 of events 50 Mean 199 200 13.08 Sigma 12.23 40 5 mm ē amplitude (mv) 100 Mun 30 13.45 σ_E= 6 % Ξ 50 13.90 14,20 -9.50 -9.12 170 180 190 200 amplitude (mV) 160 1.5 mm

Signal maximum amplitude distribution measured over the 1.5 x 1.5 mm² surface

Horizontal lines = beam top-up that occurs every hour run = 8 hours of data acquisition

95 MeV/u¹²C beam at GANIL

Energy resolution 0.5 x 0.5 cm² x 300 μm pc-CVD Augsburg

95 MeV/u¹²C beam at GANIL

10 x 10 mm² x 500 μm pc-CVD E6

 160.5 ± 4.2 265.7 ± 7.3 Constant Constant Number of events Number of events 180 160 140 120 80 60 40 Mean 0.49 ± 0.00 0.245 ± 0.002 Mean 0.066 ± 0.002 0.1102 ± 0.0027 Sigma Sigma 1 ion ion σ_E = 22 % 「σ_E = 27 ፟% Πrr amplitude (V) amplitude (V) Constant 39.41 ± 1.72 Constant 73.69 ± 2.80 ٦ 0 9849 ± 0.0138 250 0.4826 ± 0.0142 Number of events Mean Number of events Mean 0.2301 ± 0.0233 Sigma Sigma 0.1445 ± 0.0149 2 ions 2 ions $\sigma_{\rm E} = 29 \%$ $\sigma_{\rm E} = 23 \%$ amplitude (V)¹²ML Gallin-Martel LPSC Grenoble amplitude (V)

 $20 \times 20 \text{ mm}^2 \times 500 \text{ }\mu\text{m} \text{ pc-CVD} \text{ E6}$

Conclusion

Synthetic pc-CVD diamond detectors are foreseen for on-line hadrontherapy beam tagging applications.

They will be used as a hodoscope which plays a major role for particle tagging using Time Of Flight both in a gamma camera and Compton camera projects proposed by the CLaRyS French collaboration. Other applications such as proton radiography and secondary proton vertex imaging are also foreseen.

Their radiation hardness, fast response and good signal to noise ratio make diamonds good candidates :

- a time resolution better than 40 ps,
- □ an energy resolution better than 10 %,

were measured irradiating the whole surface of pc-CVD diamond using various ionizing radiations particles despite the obvious non uniformity of the crystalline structure (ESRF response map).

Test benches have been setup at LPSC: alpha, beta sources + wave catcher acquisition

Ongoing surface characterization using ESRF X-ray microbeams (response map)

Thickness optimization : plasma etching

The final detector will consist of a ~15×15 cm² mosaic arrangement of stripped sensors read by a dedicated integrated electronics (~1800 channels) with the following characteristics :

- counting rate per channel : 10 MHz,
- □ time resolution at the level of few tens of ps,
- □ spatial resolution at the level of 1 mm.
- dynamic range: from 250 MeV protons to 80 MeV/u carbon

The availability and affordability of very large area diamonds is still an issue for our needs!

Acknowledgement

The authors would like to acknowledge the **ESRF** for provision of synchrotron radiation facilities and would like to thank the ID21 beamline staff for their assistance with experiment MI-1243.

This work was supported by the Labex PRIMES (ANR-11-LABX-0063), FranceHadron (ANR-11-INBS-0007) and ANR MONODIAM-HE (ANR-089520).

France HADRON

The **CLARA Canceropole** (Oncostarter Project) is thanked.

The authors are grateful to **Matthias Schreck** from the Augsburg University for providing the LPSC laboratory with samples of diamond heteroepitaxially grown.

Dominique Breton from the Laboratoire de l'Accélérateur Linéaire and **Eric Delagnes** from CEA Saclay are thanked for their implication in dedicated software development and technical support of the namely **"wavecatcher"** data acquisition system

BACKUP

Diamond metallization

The crystal surface preparation and metal deposition is performed by a sequential plasma process consisting in two steps of reactive plasma processing followed by plasma-assisted sputtering

To learn more:

A. Lacoste et al., Multi-dipolar plasmas for uniform processing: physics, design and performance, SCi. Technol., 11 pp 407-412, 2002

			Unit
	SAMLONG ASIC technology	AMS CMOS 0.35µm	
Maria Catalean	System number of channels	2, 8, 16, 32, 48, 64	
waveCatcher	Power consumption	2.5 (2-ch), 15 (8-ch),	W
		23 (16-ch), 100 (64-ch)	
500 IVIHZ; 3.2 GS/S	Sampling depth	1024 / channel	Cells
	Sampling speed	0.4 to 3.2	GS/s
	Bandwidth	500	MHz
	Range (unipolar)	\pm 1.25 (with full range	V
8 CAC 8-CHANNEL WAVECATCHER ®		individual channel offset)	
	ADC resolution	12	bits
	Noise	0.75	mV
LINK USB O O USB TELGOUT SITCES TELGOUT			rms
	Dynamic range	11.5	bits
irtu			rms
	Readout time	11 to 66 (depends on	μs
	Time musicing before	aumber of cens read)	
	correction	< 20	ps rms
saclay	Time precision after time INI	<5	ns
saciay	correction		rms

It is based on the SAMLONG chip, an analog circular memory of 1024 cells per channel designed in a cheap pure CMOS $0.35\mu m$ technology.

The board also offers a lot of functionalities. It houses a USB 12 Mbits/s interface.

D. Breton, E. Delagnes, J. Maalmi – Workshop on timing detectors – Krakow – November 2010

Contact persons :

Dominique Breton, Jihane Maalmi and Pascal Rusquart are with the Laboratoire de L'accélérateur Linéaire from CNRS/IN2P3, Centre scientifique d'Orsay, Bâtiment 200, 91898 Orsay Cedex, France (telephone: + 33 1 64468330, e-mail: breton @lal.in2p3.fr, jmaalmi@lal.in2p3.fr).

Eric Delagnes is with CEA/IRFU, Centre de Saclay, 91191 Saclay, France (telephone: + 33 1 69082252, e-mail: eric.delagnes@cea.fr) ML Gallin-Martel LPSC Grenoble

	NINO	PADI	Expected ASIC
Bandwidth	≈ 500MHz	411 MHz	> 2GHz
Input Impedance	50 Ω Adjustable	30-160 Ω	< 30 Ω - ?
Min. Input-referred Threshold	10fC	25fC	< 5fC
Threshold Type		DAC	DAC
Gain (dB)	30	48	> 40
Techno.	CMOS 250 nm	CMOS 180 nm	CMOS 130 nm
Input Signal range	30fC – 2pC		<5fC – 600fC (proton)

Contact persons :

Laurent Gallin-Martel (laurent.gallinmartel@lpsc.in2p3.fr) Fatah Rarbi(rarbi@lpsc.in2p3.fr) are from LPSC Grenoble France

Time resolution measured on various diamonds				
	Diamond	Preamp.	HT (V)	Time Resolution RMS (ps).
sc	0.45 x 0.45 cm ² x 518 μm	CIVIDEC	-500	26,7
sc	0.45 x 0.45 cm ² x 518 μm	CIVIDEC	500	25,1
sc	0.45 x 0.45 cm ² x 518 μm	DBAIII	-500	48,84
sc	0.45 x 0.45 cm ² x 518 μm	DBAIII	500	50,11
sc	0.45 x 0.45 cm ² x 518 μm	LPSC	-500	53,8
sc	0.45 x 0.45 cm ² x 518 μm	LPSC	500	48,41
рс	0.5 x 0.5 cm ² x 300 μm	CIVIDEC	300	49,22
рс	1 x1 cm ² x 500 μm	CIVIDEC	300	71,94