

Diamond-based thin detectors for radiobiological applications of charged-particle microbeams

<u>P. Barberet¹</u>, M.Pomorski²

1. Centre d'Études Nucléaires de Bordeaux-Gradignan, France 2. CEA-LIST , Diamond Sensors Laboratory, France

AIFIRA facility

- 3.5 MV Singletron accelerator (HVEE)
- Ions: p, d and helium
- \bullet 2 microbeam lines \rightarrow 1 dedicated to targeted irradiation of cells

Micro-irradiation and dose control

<ロト < 回 > < 回 > < 回 > < 三 > 三 三

Micro-irradiation and dose control

For MeV light ions (p, He), medium too thick \Rightarrow detector upstream the sample

Detecting (efficiently) MeV light ions

We have to use **thin transmission detectors** Several approaches:

- Thin plastic scintillators (e.g. Gray Lab, PTB ...)
- Gas detectors
- Secondary electrons from vacuum window
- Thin semi-conductors (Si or diamond)

Detecting (efficiently) MeV light ions

We have to use **thin transmission detectors** Several approaches:

- Thin plastic scintillators (e.g. Gray Lab, PTB ...)
- Gas detectors
- Secondary electrons from vacuum window
- Thin semi-conductors (Si or diamond)

3 MeV Helium ions : 140 keV· μ m⁻¹ in water, range \approx 15 μ m \Rightarrow secondary electrons 3 MeV protons : 12 keV· μ m⁻¹ in water, range \approx 150 μ m \Rightarrow thin active scCVD membrane

Secondary electrons detectors

Up to now, mainly used for detecting heavy ions (GSI Darmstadt) B. Fischer et al. (2003), NIMB 210, 285–291

E

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

Secondary electrons detectors

We revisited the idea of using Boron-doped NanoCrystalline Diamond (BNCD) coatings

 \Rightarrow coating of commercial ${\rm Si_3N_4}$ vacuum windows with nm thick BNCD

э

(日) (同) (三) (三) (三)

BNCD membranes fabrication

イロト イポト イヨト イヨト

- MWCVD p+ diamond growth (MicroWave assisted Chemical Vapour Deposition)

э

BNCD membranes fabrication

BNCD growth on 150 nm thick Si_3N_4 windows

Thickness measurements

Thickness homogeneity

Median map of the energy transferred through the BNCD membrane \Rightarrow very good homogeneity on mm scale (scale bar = 100 μ m)

Э

・ロト ・聞ト ・ヨト ・ヨト

Channeltron pulse height analysis

SE map (Scale bar: $100 \mu m$)

(日) (同) (三) (三)

- Pulse height well separated from the background
- Very low dark counts (< 10 s⁻¹)
- Good reproducibility and homogeneity over the membrane surface

Efficiency measurements

Counting the transmitted particles with a silicon detector

Э

▲日 → ▲圖 → ▲ 圖 → ▲ 圖 →

Efficiency measurements

Counting the transmitted particles with a silicon detector

\Rightarrow 100% efficiency

Э

Radiation hardness: BNCD

5th ADAMAS Workshop @ GS

Radiation hardness: Csl

5th ADAMAS Workshop @ GS

Validation using track detectors

Use of BNCD membrane as a vacuum window.

CR39 Track detectors irradiated in air through the BNCD membrane a. Single He ions delivered in air (Scale bar = 10 μ m) b. 10 He per spot (Scale bar = 10 μ m)

(日) (同) (三) (三) (三)

э

Validation for cell irradiation

Irradiation of U2OS cells expressing RNF8-GFP RNF8 Ubiquitylates Histones at DNA Double-Strand Breaks

Figure : 1 He ion delivered every 5 μ m. Online image acquisition 30 min. after irradiation (Scale bar = 10 μ m)

э

scCVD active membrane

Secondary electron yield is not sufficient for proton detection \Rightarrow active membrane Grilj *et al.* App. Phys. Lett. 103, 243106 (2013)

Э

・ロト ・聞ト ・ヨト ・ヨト

Preliminary measurements (1)

TRIGGER

Type Front

M Pos: 16.20 us

2 CHT 500mV CH2 2.00V M 10.0 Js CH2 2.00V M 10.0

Microscope view of the membrane

Pulses : blue = Si detector yellow = membrane

<ロト <部ト <きト <きト = 3

Tek

Preliminary measurements (2)

Э

▲日 → ▲圖 → ▲ 圖 → ▲ 圖 →

Preliminary measurements (3)

Energy loss measurements under vacuum with a 3 MeV proton microbeam Thickness assuming 37 $keV \cdot \mu m^{-1}$ for 3 MeV protons in diamond

Conclusion

BNCD based thin detector:

- Thin enough for MeV Helium ions
- 100% efficient
- Compared to Csl :
 - Radiation hard (2 \times Csl)
 - Can be stored in air

This detector is now installed on the AIFIRA facility in Bordeaux for routine irradiations Work submitted to *Scientific Reports*, under review ...

scCVD active membranes for proton detection :

- ullet 100 % efficiency is achievable with thicknesses \leq 3 μ m
- Further testing in progress ...

Acknowledgement

* CENBG

Gérard Claverie, Laurent Daudin, Hervé Seznec, Giovanna Muggiolu, Marina Simon, Guillaume Devès Philippe Alfaurt

Cea lint

Michal Pomorski Christine Mer-Calfati Samuel Saada Guillaume Berthet Sopheasit Hem

Funding:

Э