

ScCVD diamond detector for MIPs and heavy ions

- radiation damage for heavy ions
- timing and position measurements for MIPs

J. Pietraszko^a,

^a GSI Helmholtz Centre for Heavy Ion Research GmbH Planckstrasse 1, D-64291 Darmstadt, GERMANY

J. Pietraszko, 4th ADAMAS Workshop, GSI, 2. – 4. December 2015

Radiation damage in scCVD diamond material

measured with relativistic Au ions for future

CBM/HADES experiments at FAIR

J. Pietraszko^a, A. Draveny^b ,T. Galatyuk, V. Grilj^c, W. Koenig^a, M. Träger^a

> ^a GSI Helmholtz Centre for Heavy Ion Research GmbH Planckstrasse 1, D-64291 Darmstadt, GERMANY ^b Ecole Centrale de Lyon

> > ^C Ruđer Bošković Institute, Zagreb d Technische Universität Darmstadt, Darmstadt, Germany

J. Pietraszko, 4th ADAMAS Workshop, GSI, 2. - 4. December 2015

T0 and beam monitoring detector requirements

Applications:

✓ high rate CBM experiment at FAIR: beam intensity 10⁹ ions/s

CBM

- ✓ HADES at SIS100: beam intensity 10⁷ ions/s
- \rightarrow Single particle mode
- \rightarrow T0 determination
- \rightarrow Beam monitoring
- → Fast Beam Abort System
- Low interaction probability, low Z,
- \checkmark Time resolution, below 50 ps
- In vacuum operation,
- Position information better than 0.5 mm
- ✓ Radiation hard material !!!

HADES

HADES/CBM beam line

CBM beamline aperture

Prototype diamond detector

The key features:

- Double-sided multi-strip diamond based sensor for HI (16 channels on each side)
- ✓ Strip width: 200 µm, gap: 90 µm, det. thickness: 60 µm
- ✓ Fast, high rate readout electronics, up to 10MHz/channel
 - Multihit TDC, 17 ps intrinsic time res
 - Det. resolution < 50 ps

Prototype detector performance

Beam monitoring and T0 for Au beam @ 1.25 A GeV:

- ✓ Single partilce mode up to 10⁷ ions/s per channel
- Precise beam profile in X and Y
- Beam HALO measuerment
- \checkmark T0 with σ < 50 ps

Strip number (300 um)

 \rightarrow 2.5 mm (Y) x 1.9mm (X) - (6 σ - 99,7%) stProfileYminb stProfileXminb ×10³ stProfileY- min bias stProfileXminb ×10³ 2810303 Entries Entries 3270813 Mean 11.75 800 800 Mean 12.5 RMS 1.143 1.386 RMS 600 600 400 400 200 200 0_ն՝ 0 10 12 14 16 18 20 2 4 6 8 8 10 14 16 20 4 6 12 18

Strip number (300 um)

J. Pietraszko, 4th ADAMAS Workshop, GSI, 2. - 4. December 2015

Radiation damage – part 1

- ✓ Sample irradited at GSI with Au @ 1.23 A GeV (3 x 10¹¹ ions)
- ✓ Pulse height scan with 4.5 MeV µ-beam of protons
- ✓ Ion Beam Induced Current (IBIC) method at the Laboratory for ion beam interactions at the Ružler Boskovic Institute in Zagreb

→ pulse height spectrum reduced by a factor of 5.1 at absorbed dose of about 87 MGy

J. Pietraszko, 4th ADAMAS Workshop, GSI, 2. - 4. December 2015

Detector has been irradiated in 7 places with focused 1.23 AGeV Au beam. the particle fluence for each spot has been precisely measured.

•Strip X

Detector under test:

- 60 um thick , scCVD diamond
- 16 readout strips on each side, 200 um + 90 um spacing
- pixel size: 290 um x 290 um

photo of the metallized sensor before mounting on the PCB

-	1.86.1	м.,		-							1			H.
10410	- 88.0	-				-		-	Ň	87	-MC	-		
								w		-	-	-		
- 52-	-			-	- 81.1			-11-	×1	-	- 84	- 61	-	-11
	- 20			81		-			1811	M		-81	- 14	
					-		N-	este	SM I	- 81	.81			181
	-		- MAR	- 81		81.		- 11	-	-	-	- 11	M	-
				- 11				81	-		-	H	- 88	31
- 81		-	- 22-	-	-			-		- 84	-	81	1993	- 11
				-	100		N.		-		-	-		-
-			- 11		-	-		-	-	-	- 81	-		-11
-			181.1					M	-	-	- 85	-	н.	
				81.	- 84			- 11-2	- 11		-		- 21	
		81.0	-						.M.	-	M	-		
	-	н	ы	11	- 81		81		11		-	- 81	м	ale l

J. Pietraszko, 4th ADAMAS Workshop, GSI, 2. – 4. December 201

Fluence map for each irradiation period

Detector has been irradiated in 7 places with focused 1.23 AGeV Au beam. the particle fluence for each spot has been precisely measured.

Detector under test:

- 60 um thick , scCVD diamond
- 16 readout strips on each side, 200 um + 90 um spacing
- pixel size: 290 um x 290 um

photo of the metallized sensor before mounting on the PCB

100	100	Ma			- 61						100		B	n.
10410	- 88	100		81		rika in		-	-	87	-MC	-	- 11	-
		м.				-		- 12	-	-	-	- 84-1		
-	-	-		-	-		-	-11	- 11	-	- 85	-	-	-
	- 30			82		-				NI.			- 81	
				-	-		N		- M	- 82			-	181
	- 81			81		81.		- 81			-		м	ini)
	- 84			м	-		-	-	-	-	-	- 21	- 84	
	-		-	-	-			-		-		81		-
		н.		and the	-	-	-	-	100			-		
-			- 84 -	-	-	-		-	811	81	- 11	81		-11
-			-	-	-			M	-		- 85	-		
			-	81		-		-						
-		81.	-	- 81	-	-			81	M	-	-	21.	
	-			-	- 81	-	81		-	- 84			м	and

J. Pietraszko, 4th ADAMAS Workshop, GSI, 2. - 4. Decembe

Fluence map in one histogram fitted with seven 2d functions

Detector has been irradiated in 7 places with focused 1.23 AGeV Au beam. the particle fluence for each spot has been precisely measured.

Detector under test:

- 60 um thick , scCVD diamond
- 16 readout strips on each side, 200 um + 90 um spacing
- pixel size: 290 um x 290 um

photo of the metallized sensor before mounting on the PCB

Fluence map in one histogram fitted with seven 2d functions

J. Pietraszko, 4th ADAMAS Workshop, GSI, 2. - 4. Decembe

Detector has been irradiated in 7 places with focused 1.23 AGeV Au beam. the particle fluence for each spot has been precisely measured.

Detector under test:

- 60 um thick , scCVD diamond
- 16 readout strips on each side, 200 um + 90 um spacing
- pixel size: 290 um x 290 um

photo of the metallized sensor before mounting on the PCB

J. Pietraszko, 4th ADAMAS Workshop, GSI, 2. - 4

Fit **result** to the fluence: seven 2-dim functions.

First try:

uBeam scan, Zagreb, unfortunately two most important spots are not properly measured **– noise !!**

Detector has been irradiated in 7 places with focused 1.23 AGeV Au beam. the particle fluence for each spot has been precisely measured.

Detector under test:

- 60 um thick , scCVD diamond
- 16 readout strips on each side, 200 um + 90 um spacing
- pixel size: 290 um x 290 um

photo of the metallized sensor before mounting on the PCB

J. Pietraszko, 4th ADAMAS Workshop, GSI, 2. - 4

Fit **result** to the fluence: seven 2-dim functions.

Second try – online picture:

uBeam scan, Zagreb, Whole detecotr measuered

The final result

Detector under test:

- 60 um thick, scCVD diamond
- 16 readout strips on each side, 200 um + 90 um spacing
- pixel size: 290 um x 290 um

photo of the metallized sensor before mounting on the PCB

J. Pietraszko, 4th ADAMAS Workshop, GSI, 2. - 4

Mean x

Mean y

RMS x

RMS y

12

10

14

Fit result to the fluence: seven 2-dim functions.

16

14

12

10

2

6

Second try – online picture: uBeam scan, Zagreb,

Whole detecotr measuered

Radiation damage study for Au beam: outcome

Very stable detector behavior after irradiation ($\sim 10^{12}$ Au ions / mm²):

- Leakage current below 10 nA _
- Time resolution below 60 ps

Analog signal for Au ions before irradiation

Possible long term solution:

- original signal amplitude: 150 mV
- radiation damage: reduction by a factor of 6? -
- additional amplification x 10

\rightarrow very long running period

Acknowledgements

- 1. GSI Detector Lab: M. Träeger, R. Visinka, M.Kis et al.
- 2. GSI Target Lab: A. Hübner et al.
- 3. Ruđer Bošković Institute (µ-beam), Zagreb: V. Grilj, N. Skukan,
- 4. AIDA-2020 access program

J. Pietraszko, 4th ADAMAS Workshop, GSI, 2. – 4. December 2015

Diamonds for MIPs. Diamonds for high precision tracking - PADI for straw tube readout

beam test – Jülich, Feb. 2015

Jerzy Pietraszko, Michael Träger, Mircea Ciobanu, Jochen Frühauf

Aim of the test

Needed a reference detector:

- position resolution below 50 μm
- time resolution better 100 ps
- single particle mode for MIPs

PADI6 ASIC for straw tube readout

(M. Ciobanu, m.ciobanu @ gsi.de)

- 4 channel per ASIC, differential inputs 8 channel on FEET-PADI6_Hda
- conversion gain: 35(17.5*)mV/fC
- voltage gain: 244
- BW: 416MHz
- time constant in setup: ~20ns

Straw tube detector

- CBM MUCH prototype
 6mm diameter, ~22cm length
- detector gas: Ar/CO₂ (70/30)
- gas pressure: 1bar
- HV: 1800V
- AC coupling to PADI input: 400pF(straw), 2.2nF(PCB)

→ scCVD diamond

Experimental setup – reference detector

Reference, tracking, scCVD detector

- four channels metallization
- 100µm space between electrodes
- time resolution below 100 ps

scCVD diamond signal for MIPs

Used threshold: 7mV on each channel → position better than 50µm

Experimental setup

- straw tubes connected to the PADI v6
- straw diameter: 6 mm
- Ar/CO₂: 70%/30%
- HV: 1800 V

Reference, tracking, scCVD detector

- four channels metallization
- 100µm space between electrodes
- time resolution below 100 ps
- attached to a movable table, (µm step precision)

DAQ /Trigger:

- Oscilloscope used as a DAQ (R&S 1044)
- correlated signal in two diamond electrodes used as a trigger
 - \rightarrow proton in the 100µm gap between electrodes.

Experimental setup

Drift time measurement

Time difference between the scCVD diamond detector and Straw Signal from the PADI discriminator. → Drift time spectra (example for 5 positions)

www.tinkercad.com

Drift velocity estimation

Dubna straw tubes d=6mm PADI6 readout gas:Ar/CO₂(70/30)@1bar

Summary

Radiation damage

- Stable diamond operation after irradiation above 10¹¹ Au ions/mm²
- Leakage current below 10nA
- Time resolution below 60 ps
- Significant CCE reduction, more than a factor of 6 !
- Can be compensated by additional amplification x 10

Diamonds for MIPs

- Excellent time resolution for MIPs, below 100ps
- Position resolution better than 50 µm and can be improved

Thank you

Diamonu signai properties for Au ions

(197Au at 1.25 A GeV) and alpha particles

High Voltage $V/\mu m$

- → Fast signal: rise time < 100 ps, base width < 2ns.</p>
 - → differently amplitude/HV characteristics for Au ions and by Alpha particles

$1V/\mu m$

 \rightarrow Time resolution below 50 ps

Radiation hardness test with Au beam

- \rightarrow several days with well focused beam
- \rightarrow 10⁶ ¹⁹⁷Au ions/s (¹⁹⁷Au at 1.25 A GeV)
- \rightarrow single particle readout \rightarrow total number of particles measured

Dismounted detector:

J. Pietraszko, 4th ADAMAS Workshop, GSI, 2. – 4. December 2015

Radiation hardness test with Au beam - results

- ✓ Pulse height scan with 4.5 MeV μ -beam of protons
- ✓ Ion Beam Induced Current (IBIC) method at the Laboratory for ion beam interactions at the Ružer Boskovic Institute in Zagreb

 \rightarrow pulse height spectrum reduced by a factor of 5.1 at absorbed dose of about 87 MGy

J. Pietraszko, 4th ADAMAS Workshop, GSI, 2. – 4. December 2015

Outlook

scCVD diamond strip detector irradiated with ¹⁹⁷Au

- ✓ Strip scCVD diamond: 16 strips on each side \rightarrow position information
- ✓ Several beam spots → different absorbed doses
- ✓ Preliminary pulse height scan with 4.5 MeV μ -beam of protons → improvement needed
- ✓ Ion Beam Induced Current (IBIC) method at the Laboratory for ion beam interactions at the Ružer Boskovic Institute in Zagreb

ightarrow ongoing analysis, results come soon

Thank you