

Laser Processing and Characterisation of 3D Diamond Detectors

ADAMAS GSI meeting 3rd Dec 2015

Steven Murphy University of Manchester 3D Diamond Group / RD42

- Laser setup for fabricating graphitic electrodes
 - How electrodes are fabricated
 - Issues with the setup
 - Planned upgrades
- Sample processed in Manchester
- Resistivity measurements
- Cross polarised microscope
 - Images of single and polycrystalline samples
 - Relative stress measurements
- Raman spectroscopy
 - Effect of fabrication parameters on diamond to graphite ratio

- University of Manchester, Laser Processing Research Center
- Wavelength = 800 nm
- Repetition rate = 1 kHz
- Pulse duration = 100 fs
- Spot size = 4 µm
- Pulse Energy ~ 1 μ J

- Graphitic electrode formation starts from bottom
- Pulp formed on the seed side Exit Seed 600um S Murphy, University of N 03/12/2015 4

MANCHESTER 1824 Laser - Fabrication

- Graphitic electrode formation starts from bottom
- Pulp formed on the seed side
- Craters formed on the exit side due to lower density of column material

03/12/2015

MANCHESTER 1824 Laser - Beam Width

Measure beam width using knife-edge technique

- Attach knife to stage and move across beam
 -> drop in power
- Record power -> build up error function profile
- Repeat at different z positions
 - Estimate focal point position
 - Estimate focal spot size related to X_{90} - X_{10}

Power meter

MANCHESTER Laser - Beam Width

- Measure beam width using knife-edge technique
- Attach knife to stage and move across beam -> drop in power
- Record power -> build up error function profile
- Repeat at different z positions

1824

- Estimate focal point position
- Estimate focal spot size related to X_{90} - X_{10}
- Focal spot size is very large
 - ~ 400 μ m (4 μ m in glass!)
- Asymmetry in the measurements
- No sign of converging close to focal point

03/12/2015

MANCHESTER 1824 Laser - Beam Width II

Need to accurately measure near the focal point

Use a beam profiler

Beam profiler shows shape at the beam

- 6 mm before all optics
- 16 µm at focal point
 - 90% width of Gaussian
 - Size of spot in diamond smaller due to energy threshold for graphite

Before optics

Laser - Upgrades

• New power meter

MANCHESTER 1824

- Measure lower power
- Useful for knife edge measurements
- In-situ camera to track progress
- Record beam power during long-term drilling
 - Measure of beam stability
 - Identify malformed structures -> re-drill

Laser - Upgrades II

Х

Spatial light modulator

- Dynamic adaptive wavefront of beam with z
- Higher aspect ratio of graphitic electrodes
- Lower resistivity of electrodes
- Multiple passes to ensure well formed structure
- Established process by the University of Oxford*

*APPLIED PHYSICS LETTERS 105, 231105 (2014)

03/12/2015

S Murphy, University of Manchester

Flat wave front

MANCHESTER 1824 Laser - Upgrades III

Surface contacts

Received sample from Oxford made using the spatial light modulator

- Good optics -> diameter of O(1 μ m)
- Can fabricate 3D wires
 - Form new graphitic structures in diamond
 - Even more radiation hard

*APPLIED PHYSICS LETTERS 105, 231105 (2014)

03/12/2015

- Processed in Manchester
 - Laser drilling, metallisation, wire bonding
- Fabricate arrays of electrodes with different fluences
 - Diameter increases with fluence

Array	Fluence/ Jcm ⁻²	Column diameter/ µm
А	2.0	7.6 ± 0.8
В	3.0	10.2 ± 1.2
С	3.5	12.4 ± 0.9
D	4.8	18.0 ± 1.3

03/12/2015

MANCHESTER 1824 Resistivity - Results

Resistivity constant with fluence

• O(few Ωcm)

- Only 1 measurement for array A
 Difficulty contacting electrodes
- c.f. Oxford sample
 - Diameter = 1.1 1.3 µm
 - Resistivity = 0.2 Ωcm

Array	Fluence/ Jcm ⁻²	Column diameter/ µm	Resistivity/ Ωcm	
А	2.0	7.6 ± 0.8	0.75	
В	3.0	10.2 ± 1.2	2.47 ± 0.86	
С	3.5	12.4 ± 0.9	2.58 ± 0.89	
D	4.8	18.0 ± 1.3	2.63 ± 0.71	

03/12/2015

MANCHESTER 1824 Cross Polariser - Setup

Use two polarisers, crossed by 90°

Plot histogram of brightness

MANCHESTER 1824 Cross Polariser - Results

600 µm

Single crystal (E6, 0.5 mm thickness): high stress around electrodes Poly-crystal (E6, 0.5 mm thickness):

high stress due to grain

boundaries in diamond bulk

Useful diagnostic for electrode yield

Malformed electrodes have low surrounding stress

120 μm 03/12/2015

MANCHESTER 1824 Cross Polariser - Results II

Use entire array for calculating stress

All images are the same size

Stress increases with fluence

• Higher fluence -> higher diameter so higher stress surrounding electrode

MANCHESTER 1824 Raman - Setup

University of Manchester, Laser Processing Research Center

Photons from laser incident on surface

 Photons scattered by molecules within sample -> energy loss from vibrational levels

 Spectrometer analyses scattered photons -> spectrum characteristic of molecule

• HORIBA LabRam spectrometer

03/12/2015

- 488, 633 nm wavelength sources
- Spot size = 5 µm

MANCHESTER Raman - Results

Extract peak counts and peak width

03/12/2015

1824

MANCHESTER 1824 Raman - Results II

Measure ratio of diamond to graphite G peak

- Estimate of material composition of electrodes
- Ratio reaches minimum at centre of electrode

MANCHESTER Raman - Results II

Measure ratio of diamond to graphite G peak

 Estimate of material composition of electrodes

1824

Ratio reaches minimum at centre of electrode

 Ratio is a diagnostic for deducing best fabrication parameters (beam power, movement speed)

 More diamond on exit side (x) vs seed side (\Box)

• High power (150mW), fast speeds $(10 \text{ mm/s}) \rightarrow \text{best results}$

 Results are for a poly sample from Göttingen 03/12/2015 S Murphy, University of I

- Laser working again
 - Some work needed to correct for airy disc
- 3 useful diagnostic techniques available in Manchester
 - Resistivity measure of electrical properties
 - Cross polariser measure of stress in diamond
 - Raman measure of electrode material content
- Implement improvements to laser setup in 2016
 - Record beam power
 - Install spatial light modulator

MANCHESTER 1824 Backup - Knife edge

 Spot size of Gaussian beam varies with z:

$$w(z) \left[w_0 \sqrt{\left[1 \left[\frac{z^2}{z_R^2} \right] \right]} \right] \qquad z_R \left[\frac{f w_0^2}{f} \right]$$

• For a beam propagating in zdirection:

$$I(x, y) \left[I_0 e^{\left[\frac{2x^2}{w_x^2} e^{\left[\frac{2y^2}{w_y^2} \right]} \right]} \\ P_{TOT} \left[\int_{\left[\frac{1}{y} \right]} \left[I(x, y) dx dy \right] \frac{1}{2} I_0 w_x w_y \right]$$

• It can be shown that the power at X is [1]:

• The distance between 10% and 90% beam power relates to the spot size:

 $X_{10} \upharpoonright X_{90} \upharpoonright 1.28 w_x$

[1]: http://massey.dur.ac.uk/resources/grad_skills/KnifeEdge.pdf

03/12/2015

MANCHESTER 1824 Backup - Graphitization

- Energy threshold for graphitization
- Below threshold -> no graphitization
- Above threshold -> spot size depends on how far above threshold peak energy is
- Peak energy of A < peak energy of B
 - Energy above threshold is lower -> smaller electrode diameter

