

Fast diamond membrane detector for the measurement of intense ion bunches

4th ADAMAS Workshop at GSI

Darmstadt, Germany 3rd - 4th December 2015

> Diana Jahn TU Darmstadt AG Prof. Markus Roth

Target Normal Sheath Acceleration (TNSA)

F. Nürnberg, PhD thesis TU Darmstadt (2010)

intense ion source: $10^{11} - 10^{13}$ protons in ~ 1 ps

■ low emittance: < 0.01 mm mrad transversal, 10⁻⁴ eV s longitudinal*

huge accelerating field gradients: MV/μm

* T. Cowan, Ultralow Emittance, Multi-MeV Proton Beams from a Laser-Virtual Cathode Plasma Accelerator, PRL 92,20 (2004)

Laser Ion Generation, Handling and Transport

TECHNISCHE UNIVERSITÄT

DARMSTADT

Laser Ion Generation, Handling and Transport

proton acceleration by the GSI Phelix Laser

beam shaping via conventional accelerator technology

4.12.2015 | 4th Adamas Workshop at GSI | Diana Jahn

The LIGHT project

S. Busold, PhD thesis TU Darmstadt (2014)

HELMHOLTZ

GEMEINSCHAF1

LIGHT beamline

Laser Ion Generation, Handling and Transport

LIGHT beamline: cavity

TECHNISCHE UNIVERSITÄT DARMSTADT

LIGHT beamline: cavity

Laser Ion Generation, Handling and Transport

prototype detector

prototype with 13 μm pcCVD

characterization with laser irradiation FWHM: 323 ps ± 40 ps

prototype detector

prototype with 13 μm pcCVD

measurement of proton bunch length: FWHM: 462 ps ± 40 ps*

*S.Busold et al., Towards highest peak intensities for ultrashort MeV-range ion bunches, Scientific Reports 5, 12459 (2015)

design of the membrane detector

TECHNISCHE

UNIVERSITÄT DARMSTADT

design of the membrane detector

TECHNISCHE

UNIVERSITÄT DARMSTADT

response function

- laser irradiation
 - λ = 1053 nm
 - τ = 350 fs
 - E = 1 10 mJ
- detector response FWHM: 110 ps ± 40 ps

TECHNISCHE experiment setup UNIVERSITÄT DARMSTADT diamond detector bunch propagation 30 V power supply 8 GHz oscilloscope SMA cables E HELMHOLTZ 4.12.2015 | 4th Adamas Workshop at GSI | Diana Jahn **GEMEINSCHAFT** Laser Ion Generation, Handling and Transport

proton bunch measurement

- optimization of cavity parameters
- shortest measured ion bunch:
 - FWHM: 235 ps ± 40 ps

Laser Ion Generation, Handling and Transport

proton bunch measurement

- optimization of cavity parameters
- shortest measured pulse:
 - FWHM: 235 ps ± 40 ps

deconvolution:

FWHM: 209 ps ± 18 ps

summary

realization of scCVD membrane detector with an upgraded design thinness: 5 - 7 μm diameter: 0.5 mm

• characterization under laser irradiation (τ = 350 fs, λ = 1053 nm)

 \rightarrow response time of 110 ps ± 40 ps at FWHM

successful application within the LIGHT project

 \rightarrow measurement of proton bunches with 235 ps ± 18 ps at FWHM

Thank you for your attention!

The experimental team

D. Schumacher, D. Jahn, C. Brabetz, F. Kroll, S. Weih, J. Ding, A. Blazevic and M. Roth

with the help of

M. Träger and M. Kis

PHELIX team, HF group, detector lab and the **LIGHT collaboration**

