

Upgrades to the Beam Condition Monitors at CMS

Moritz Guthoff

on behalf of the Beam Radiation Instrumentation and Luminosity project (BRIL) of CMS

3rd Dec 2015 4th ADAMAS workshop, GSI, Darmstadt, Germany

- Attonuum per indigeneration and indigeneration and and a second se
- Introduction to currently used diamond based beam monitoring systems.
 - System overview of BCMF and BCML
 - Problems related to diamond detectors
- CMS phase 2 upgrade (HL-LHC)
 - Requirements for beam monitoring detector
 - Possible detector technologies
 - Radiation environment

CMS diamond beam monitoring systems

M.Guthoff - Upgrades to BCM detectors at CMS

Detector system features

BCMF

- Concept: Fast particle counter
- Application:
 - Machine induced background measurement
 - Luminosity measurement
- Detector:
 - 5x5mm² sCVD
 - Two pad metallization to reduce pile up.
- Electronics:
 - Fast preamp
 - Optical transmission
 - Discrimination + time histogramming; ADC; FPGA signal processing.

BCML

- Concept: Detector current
 measurement
- Application:
 - Beam loss monitoring (fast & intense events)
 - Active protection
- Detector:
 - 1x1cm² pCVD
 - Replaces LHC BLM ionization chamber
- Electronics:
 - LHC BLM readout electronics (40us integration)
 - Will follow changes made by LHC.

BRII

M.Guthoff - Upgrades to BCM detectors at CMS

5

processing

BCMF: Backend signal

- VME based (used in production):
 - Realtime Histogramming Unit
 - ADC data acquisition
- uTCA based (under development):
 - FMC125 ADC signal processing in FPGA.
 - Amplitude histogram, timing histogram, RAW ADC acquisition
 - In the future signal de-convolution to mitigate pileup

BCMF: features and problems

- Detector & front end system:
 - Newly built in 2014, installation in Jan 2015.
 - 24 sCVD diamonds with 48 channels
 - Design specification for HV rating: 1000V
 - Problems:
 - Noisy channels, HV trips (I > 3uA).
 - Expected current per diamond O(100nA))
 - Reduction of HV necessary: 50-250V "left"
 - Will do test beam with spare detector on hadron beam line to investigate further.

BRI

BCML: features and problems

Measurement of detector current

- Sensitive to erratic current behavior
- Magnetic field at BCML1 helps, at BCML2 not strong enough.
- BCML1 survivability good
 - Has to rely on magnetic field
 - Durability to be studied next year
 - But:
 - ~100m front end cable: More noise, flattening of fast pulses
 - BCMF problems reflect also on BCML 1
 - Only 6 out of 8 channels working
- BCML2:
 - Operational HV limited to about 200V with pCVD diamonds.
 - Radiation hardness depends on applied HV.
 - Estimations predict failure after 100 fb⁻¹

BCML dark current during magnet ramp, 7th Jul 2015

BRII

CMS phase 2 Upgrade

- Upgrade of the CMS detector in the scope of the HL-LHC project.
 - Goal: deliver 3000 fb⁻¹ (Run 1: 30 fb⁻¹, LHC lifetime 300 fb⁻¹)
 - Instantaneous luminosity: 5 x 10³⁴ cm⁻²s⁻¹ -> 4 billion collisions per second (LHC design 1 x 10³⁴ cm⁻²s⁻¹)
 - Up to 140 collisions per bunch crossing (at the same time) (currently ~20)
- Continued need for two beam monitoring systems
 - Fast particle counter
 - Precision luminosity measurement
 - Machine induced background measurement
 - Detector current measurement
 - Active protection
 - Monitoring of fast & intense loss events

Radiation tolerance needed

M.Guthoff - Upgrades to BCM detectors at CMS

BRIL

BCMF upgrade

- Expected rates:
 - Luminosity: 100 200 MHz/cm2
 - Machine induced background: ~100 kHz/cm2
- Detector size:
 - Low rates require sufficient total detector area
 - Commissioning, Heavy Ion, Van der Meer scans
 - Beam background measurements
 - > At lease same total detector area: Currently ~12cm²
- Detector granularity
 - Minimize pile up at high rates with granularity
 - > Decrease detector size by factor 3 (currently 0.125 cm²)
- Need > 150 channels
 - > Could use pixelated or strip detector.
- Sensor technology:
 - Diamond: no cooling required, R&D necessary
 - Silicon: Cooling available at Central Tracker, unlikely for potential detector at forward location

Association on the construction of the construc

- Detector requirements:
 - High dynamic range
 - Low dark current while high saturation
 - Nominal beam background rates: ~10⁵ Hz/cm²
 - Collision products: ~10⁸ Hz/cm²
 - Beam abort threshold: ~10⁶ Particles per event (~10¹⁰Hz/cm²)
 - Size & Material budget
 - Has to be optimized for detectors at Pixel location.
- Detector location:
 - More flexibility since it does not require timing
 - Sensitive to beam background
 - Accessibility (especially if replacements needed)
 - Residual dose environment make access undesirable

Possible detector technologies:

- Diamond detectors:
 - Radiation hardness only achievable with sufficient HV
 - Need magnetic field to suppress erratic currents.
- Sapphire detectors:
 - Compensate very low signal with increased detector area
 - Prototype campaign ongoing
- Ionization chambers:
 - Impossible to place inside CMS
 - Potentially for BCML2 location.

- Technical design report in 2020
- Detector R&D in the next 2-3 years !

BRI

Summary

- Continued needs for beam monitoring and detectors suitable for luminosity measurement.
- Currently installed diamond detector based system with various problems.
 - HV stability / noise. -> No possibility to overcome radiation damage
 - Granularity not suitable for Luminosity upgrade
- Detector R&D ongoing
 - New detector designs necessary to fulfill the requirements in HL-LHC

THANK YOU

BACKUP

- sCVD in BCML (500V)
- random current bursts occurring at high rates
- Similar symptom to pCVD erratic currents but less pronounced

24 GeV proton equivalent in Diamond

- Similar defined to 1 MeV neutron equivalent in silicon.
- Relative damage potential of each particle is weighted with the damage potential of the reference particle.

Monitoring with BCML

- BCML data includes different integration times to allow an analysis of fast beam loss events.
- Fast events are not significant in BCMF and

BRII

Electronics

- New front end electronics has to be identified:
 - Fast good timing
 - Trigger less readout
 - Dead time free
 - Digital readout
- Optical path
 - Currently no rad-hard solution for analogue transmission.
 - Digital optical data transmission used by CMS tracker
- Back end electronics:
 - Fast time histogramming
 - Signal amplitude measurement
 - Pileup mitigation.
 - Advanced FPGA based signal processing being developed already for current system.