

ADAMAS 2015

Degradation of charge collection in irradiated thin diamond detectors

Veljko Grilj Laboratory for Ion Beam Interactions Ruder Boskovic Institute

Outline

Introduction

Defining the problem

Main goal:

predicting the future of a detector exposed to damaging radiation

Common procedure:

radiation hardness test and calculation of damage coefficients

 $CCE = 1 - K_{ef} \times D_d$ $D_d = fluence \times NIEL$ $K_{ef} is NOT a material property$

Samples

50 µm scCVD from DDL

μm scCVD membrane

Membrane detector

Irradiation

Several areas in both detectors irradiated by proton microbeams

4.5 MeV protons

1.3 MeV protons

IBIC analysis

Detectors connected to "standard" electronic chain

detector preamplifier

Dependance on the total irradiated fluence

50 um DDL detector

Membrane detector

Dependance on the damage dose $D_d = \Phi \times NIEL$

Combined data for both detectors

Modelling

Start

CCE profile is the solution to adjoint equations:

$$\eta(\mathbf{x}, \Phi) = \frac{\int_{\mathbf{x}}^{d} d\mathbf{y} \cdot \mathbf{E}_{w}(\mathbf{y}) \cdot \exp\left[-\int_{\mathbf{x}}^{\mathbf{y}} \frac{d\mathbf{z}}{\mathbf{v}_{e}(\mathbf{z}) \cdot \boldsymbol{\tau}_{e}(\mathbf{z}, \Phi)}\right] + \int_{0}^{\mathbf{x}} d\mathbf{y} \cdot \mathbf{E}_{w}(\mathbf{y}) \cdot \exp\left[-\int_{\mathbf{y}}^{\mathbf{x}} \frac{d\mathbf{z}}{\mathbf{v}_{h}(\mathbf{z}) \cdot \boldsymbol{\tau}_{h}(\mathbf{z}, \Phi)}\right]}{\int_{\mathbf{x}}^{d} d\mathbf{y} \cdot \mathbf{E}_{w}(\mathbf{y}) \cdot \exp\left[-\int_{\mathbf{x}}^{\mathbf{y}} \frac{d\mathbf{z}}{\mathbf{v}_{e}(\mathbf{z}) \cdot \boldsymbol{\tau}_{e}(\mathbf{z}, 0)}\right] + \int_{0}^{\mathbf{x}} d\mathbf{y} \cdot \mathbf{E}_{w}(\mathbf{y}) \cdot \exp\left[-\int_{\mathbf{y}}^{\mathbf{x}} \frac{d\mathbf{z}}{\mathbf{v}_{h}(\mathbf{z}) \cdot \boldsymbol{\tau}_{h}(\mathbf{z}, 0)}\right]}$$

• total CCE is the convolution of $\eta(x,\Phi)$ and ionization profile of the probing ion $\Gamma(x)$: $CCE(\Phi) = \int_0^d \Gamma(x) \cdot \eta(x,\Phi) \cdot dx$

Modelling

Assumptions and inputs

- low damage regime, $v_d x \tau > d$
- nearly homogeneous vacancy profile of damaging ion
- homogeneous ionization profile of probing ion
- similar probability for electron and hole trapping

vacancies:

0.3

ionization:

Analitical solution

$$CCE(\Phi) = 1 - \left[\Phi \cdot \frac{\overline{vac} \cdot d}{6} \cdot \left(\frac{v_{th,e}}{v_e} + \frac{v_{th,h}}{v_h} \right) \right] k\sigma$$

$$D^* - \text{ efective fluence}$$

Short range probe, 1.8 MeV C:

Dependance on the effective flunce, D*

Dämdgèldogerepptbach

Polarization issues

1. Shallow probe (1.8 MeV C)

detector grounded for 50miecbleamODIN

Polarization issues

2. Varying the range of ions...

1.8 MeV C, range = $1.13 \,\mu m$ 7.2 MeV C, range = 3.25 µm 12 MeV C, range = 5.36 µm +30 V +30 V +30 V counts 2000 stung 2000 counts 0 -0 -0 -Ó ADC channel ADC channel ADC channel -30 V -30 V -30 V tuno 1000 2000 counts 3000 0 -ADC channel ADC channel ADC channel

Polarization issues

2. Varying the range of ions...

3. Pronounced polarization in damaged areas...

- detector polarized by 1.8 MeV C on +30 V
- signal recorded with 0 V bias and opposite polarity on shaping amplifier

Collaborators

Many many thanks to:

Tomihiro Kamiya Wataru Kada JAEA Gumna University

Thank you!

Extra slides

