

Diamond and Carbon Compounds Laboratory

Activities on diamond-based devices and detectors at CNR-ISM

Marco Girolami

Istituto di Struttura della Materia (ISM) Consiglio Nazionale delle Ricerche (CNR) Roma, Italy

DiaC² Lab is inside the CNR Research Area of Roma 1 Via Salaria km. 29,300 00015 Monterotondo Scalo (Roma), Italy A. Bellucci – PhD Student – Solar & Thermal Energy Converters
P. Calvani – Researcher – Device Technology & Surface Devices
M. Girolami – Researcher – Ionizing Radiation Detectors
D. M. Trucchi –Senior Researcher – Team Leader

DiaC² Lab Facilities

Microwave CVD ASTEX 1500 (2.45 GHz) • Diamond film deposition (up to 4'') on Si, Mo, Carbides • Nitrogen incorporation • Hydrogen p-type surface doping

Hot Filament CVD • Diamond film deposition (up to 4") • Boron p-type doping

Pulsed Laser Deposition (PLD) • Nanostructured thin-film deposition of carbon, carbides, refractory metals • Excimer (ArF, KrF), Nd:YAG, Femtosecond Ti:Sapphire

Characterization

Raman & IR spectroscopy

Spectral Photometry (200-2000 nm)

SEM - EDS

AFM

Technological Processes for Device Fabrication

MW-CVD

- Surface Hydrogen Termination
- Thermal Annealing (up to 700°C)

RF & DC Sputtering

- Ti, Al, Cr, a-C, HOPG, WC, Ag, Au
- Up to 300°C
- Substrate biasing

Femtosecond Laser Treatments

- 3D Structures
- Cutting and Drilling
- Up to 600°C, RF Plasma Enhanced

Reactive Ion Etching (RIE)

- •3 D Structures & Micromachining
- 1000 W RF Power (13.56 MHz) • Ar, O₂

Optical lithography

- 800 nm resolution
- Up to 4" masks
- Direct Writing System

Ultrasound Bonder

- •15 60 um wires • Al/Si wires

DiaC² Lab Facilities

Characterization of Devices Performance

VTEC - Vacuum & Temperature Electronic Characterization

UHV 10⁻⁹ Torr T = 77 - 1300 K

- Thermionic Emission
- UHV Field Emission
- Photoconductivity (T, $\lambda = 200-1200$ nm)
- Photo Emission Total Yield (T, $\lambda = 200-1200$ nm)
- I-V and C-V curves (Keithley and HP Instr.)
- Impedance Spectroscopy
- Four Point Probe

Detectors Characterization

X-Ray Photoconductivity

- Coolidge tube (Cu, Mo, W)
- Intensity modulation
- Frequency modulation

Climatic chamber analysis

- T from -40 to 180 °C
- Humidity value up to 98%
- Burn-in
- Ageing characterization

Time of Flight (TCT) ²⁴¹Am alpha particles in vacuum.

Alpha & Beta Spectroscopy ²⁴¹Am, ⁹⁰Sr in collaboration with Univ. Roma Tre

Neutron Spectroscopy 14 MeV Frascati Neutron Generator in collaboration with ENEA

Single-pixel detectors for fast neutrons

- 4.5 x 4.5 x 0.5 mm³ Electronic Grade plates
- Ohmic contacts, alumina PCB, aluminum tracks

Marco Girolami- <u>marco.girolami@ism.cnr.it</u> V [mV]

Ricerche

4th ADAMAS Workshop @ GSI – Darmstadt (D), December 3-4, 2015

Single-pixel detectors at ISIS spallation neutron source

- Neutrons are produced by a 800 MeV proton beam with a double bunch fine structure (rep rate 50 Hz)
- The proton beam delivers an average current of 180 µA on a Ta-W target (15–20 neutrons per incident proton)
- The two proton bunches are about 70 ns wide (FWHM) and 322 ns apart.

The structure of the event distribution in the contour plot reflects the time structure of the two bunches in the proton beam.

- Events from the two bunches are well separated in time only for deposited energies $E_d > 6$ MeV For lower E_d values the two bunches overlap.
- Blue lines reflect the maximum possible E_d for the n-alpha reactions (${}^{12}C(n,\alpha){}^{9}Be$ and ${}^{12}C(n,n')3\alpha$).
- Red lines reflect the maximum possible E_d for elastic scattering (carbon recoil after neutron collision).

Possible application as a high-flux fast-neutron beam monitor at ChipIr beamline at ISIS

Marco Girolami- <u>marco.girolami@ism.cnr.it</u>

Consiglio Nazionale delle Ricerche

Mosaic Detectors

Main features of the first prototype:

- 12 single-crystal diamond pixels 4.5x4.5x0.5 mm³
- Hydrogen-free 99.6% alumina PCB ٠
- Aluminum tracks
- Ground plane to minimize cross-talk ٠
- 2.5x2.5 cm² detection area (voids included)
- Operating voltage range: (-400 V, +400 V)
- 12 standard SMA connectors
- **Tested at CSNS (China Spallation Neutron Source)** ٠
- Recently installed at JET (UK) as part of the Vertical ٠ **Neutron Spectrometer project.**

Mosaic Detectors – Beam profiling

FAST NEUTRONS

- FNG (Frascati Neutron Generator)
- 14 MeV neutrons (Deuterium ions accelerated on a tritiated-Ti target)
- Neutron flux: 5x10¹¹ s⁻¹
- 12 simultaneous acquisitions with 12 fast charge pre-amplifiers (Cividec C6) + multichannel digitizer (CAEN V1730)

Pixel response non-uniformity could be due to:

- asymmetry of neutron yield at different neutron angles of incidence
- intrinsic broadening of incident neutron spectrum
- X-ray (8 keV) beam profile
- Large (2cm) spot-size
- 12 simultaneous acquisitions with custom front-end electronics (integrator + ADC)

Resolution limited by the restricted number of pixels and voids in the active area (gaps between adjacent pixels)

M. Girolami et al. **"Mosaic diamond detectors for fast neutrons and large ionizing radiation fields"** – Physica Status Solidi A, Vol. 212, pp. 2424-2430, (2015).

9.00 - 11.25 11.25 - 13.50

13.50 - 15.75

>15 75

AlN/Diamond Neutron Monochromators

NEW CONCEPT DEVICE FOR NEUTRON MONOCHROMATIZATION

- Thin (few hundreds of nm) film of aluminium nitride (AlN) deposited on a CVD diamond substrate.
- Surface acoustic wave (SAW) traveling between two metal IDT

<u> Marco Girolami- <u>marco.girolami@ism.cnr.it</u></u>

AlN/Diamond Neutron Monochromators

Diamond Treatment by Fs Laser for PETE cathodes

Goal:

Increase absorptance and photoconductivity in the solar spectrum for efficient conversion modules based on PETE (Photon-Enhanced Thermionic Emission)

4th ADAMAS Workshop @ GSI – Darmstadt (D), December 3-4, 2015

exergy

RS.