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Introduction 

•  Manchester is working on the development of 3D 

Diamond Detectors 

•  Use laser to write graphitic wires into the Diamond 

bulk, possible to get features of size ~1µm (see talk 

by S. Murphy for details) 

•  Deposit metallization on samples to produce electrical 

contacts 

•  Detectors then tested and simulations used to try to 

understand behavior of carriers in diamond 
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Detector Manufacture 

•  Laser used to produce electrodes 

•  Use standard photolithographic process to produce 

patterned metallization on diamond 
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TCAD 
•  Used Sentaurus TCAD package for 

simulations 

•  Create a mesh to approximate the structure 

that needs to simulated 

•  Apply a set of boundary conditions (e.g. 

electrode potentials) to find the steady state 

behavior of the device 

•  Introduce a charge density in certain regions 

of the device to simulate e.g. a MIP hit or an 

α-particle 

•  Iteratively solving the governing equations of 

semiconductors, can therefore simulate 

behavior such as current pulses 

•  Can also add more advanced Physics 

models such as field dependent mobility 
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3D Diamond TRIBIC simulations 
•  TRIBIC (Time Resolved Ion Beam Induced Current) 

measurements on 3D Diamond sample 

•  2013 Test beam in Zagreb, studied 3D Diamond detector with 

4 MeV protons, and measured current produced 

•  4MeV protons produce a Bragg peak ~80µm inside the 

diamond 

•  Self Triggered, ~ 2 µm precision 

•  Simulate the shape of the current pulse generated  
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3D Diamond TRIBIC simulations 

•  Performed the simulations on a quarter square cell structure 
with 120µm pitch 

•  Approximated the deposited charge to a Bragg peak 

•  Running transient simulations to study the how the current 

pulse changes with different applied voltages and different hit 

positions 
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3D Diamond TRIBIC simulations 

•  Ran simulations at different 
voltages 

•  SC diamond, assume no 

traps; apply a resistance to 

the electrode 

•  Simulations included a 
surface metallization along 

the y direction to match the 

detector geometry used 

•  Applied bias voltage on the 

signal electrode, which was 
also read out; kept the HV 

electrode grounded  
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3D Diamond TRIBIC simulations 
•  Observed that with certain hit 

positions, particularly hits close to one 

of the electrodes, the current pulse 

exhibited a double peak shape due to 

the different travelling time of electrons 

and holes 

•  Compared pulse amplitude from 

experiment to simulation  
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3D Diamond MIP simulations 
•  Produced a mesh containing several 150 µm square cells  

•  Signal columns were ganged together in lines along the Y-

direction by surface electrode to mimic the metallization on the 

detector used in the experiment 

•  Graphitic columns modeled as perfect contacts on surface of 

column, with 2.5 µm radius  

•  Simulations performed at 25V 
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3D Diamond MIP simulations 

•  Better understand results of test beam with a 3D 

Diamond detector using 120 GeV protons* 

•  Understand charge sharing between neighboring 

cells, particularly when a bias column was missing 

•  Understand difference in charge collection in broken 

cells 

•  Then applied simple finite charge lifetime model to 

implement measured 70 ns charge lifetime 
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*F. Bachmair et al. Nuclear Instruments and Methods in Physics Research Section A:  

Accelerators, Spectrometers, Detectors and Associated Equipment, 786:97 – 104, 2015.  

 



3D Diamond MIP simulations 
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3D Diamond MIP simulations 
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•  Simulated MIPs passing through the area of a quarter cell 

•  Divided the quarter cell into 15x15 µm squares, and simulated 

a MIP hit at the center of each square 

•  Able to plot the charge collected as function of position 
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3D Diamond MIP simulations 
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3D Diamond MIP simulations 
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•  Order of magnitude difference between charge 

collection times in broken cells and intact cells due to 

large region with low field due to missing columns 



Weighting Field 
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•  Observed the generation of a bipolar signal in strips adjacent 
to the one with the hit due to the shape of the weighting field 

around the graphitic columns 

•  These signals integrate to zero due to charge conservation 

when no traps are present 



3D Diamond MIP simulations 
•  Introduce a simple charge trapping model to mimic a 70 ns 

charge lifetime, now some charge is trapped before reaching 

electrodes resulting in a residual signal in the neighboring cells 

•  Negative signals observed in regions of intact cells, but below 

noise level 

•  In broken cell significantly more trapping, hence region with 
significant negative signals induced in neighboring cells, 

centered in position of missing bias column  
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3D Diamond MIP simulations 
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•  Overall observe that relatively uniform charge collection for 
intact cell, even with trapping 

•  In case of missing HV column, region centered around column 

with high negative signal, and lower overall signal, as observed 
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Diamonds at the Christie’s 
•  The Christie’s is a hospital that specializes in the treatment of cancer in 

Manchester 

•  Want to use 3D diamond for dosimetry in radiotherapy. 

•  Working in collaboration with the Christie hospital 

•  Goal to have detectors that allow real time, high resolution monitoring of 

dose received by patient 
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Diamonds at the Christie’s 
•  Tried scanning different parameters 

•  Moved the detector to study the 

observed current at different 

positions in the beam 

•  Tried studying the effects of applying 

different voltages to both planar and 

3D detectors 
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Future Plans 
•  Need to investigate radiation hardness of 3D Diamond, and 

study the effect of irradiation on the columns, sample has been 

irradiated; pre irradiation columns had diameter either 1.1µm 

or 1.4µm and respective resistances as low as ~2.5×106Ω and 

~1.8×106Ω  

•  Once sample is available again, will be able to compare this to 
column resistance post irradiation 

•  More measurements will be carried out at the Christie’s using 

detectors with a purposely designed geometry  

•  Investigate the effects of different electrode geometries (e.g. 

Hexagonal, rectangular etc.) both with new detectors and more 
simulations 

•  Study the effects of varying electrode shape (e.g. branching 

electrodes?) 
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Thanks for listening 
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Backup Slides 
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Semiconductor equations 
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∂n

∂t
=
1

q
∇⋅ Jn + (Gn − Rn )

∂p

∂t
= −

1

q
∇⋅ J p + (Gp − Rp )

∇⋅E =
ρ
s

ε
s

Electron Continuity Equation: 

Poisson Equation: 

Hole Continuity Equation: 

•  J – Current Density 

•  G – Carrier Generation rate 

•  R – Carrier Recombination rate 

•  ρs – Total space charge density 

•  εs – Permittivity of semiconductor 



Pernegger Values 

•  µlowe
 = 1714 cm2 V−1 s−1  

•  µlowh
 = 2064 cm2 V −1 s−1   

•  vsate
 = 9.6 × 106 cm s−1  

•  vsath = 14.1 × 106 cm s−1  
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H. Pernegger et al. Charge-carrier properties in synthetic single-crystal diamond 
measured with the transient-current technique. Journal of Applied Physics, 97(7):–, 2005. 



Simulation 

•  Carried out some 

simulations of 3D 

Diamond detectors 

•  Wanted to investigate 

the effects of missing 

columns, and the 

production of a wrong 

sign signal pulse 

observed at a test 

beam 
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M. Pomorski, P. Bergonzo, D. Trompson, F. Bachmair, L. Baeni 
I. Haughton, D. Hits, H. Kagan, R. Kass, L. Li, B. Caylar, A. Oh. 

Fabrication, characterization of a 3d diamond detector. 13th 

Vienna Conference on instrumentation - VCI 2013, 2 2013.  



3D Diamond MIP simulations 
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3D Diamond MIP simulations 
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