

Status of 3D Diamond

ADAMAS GSI meeting 19th Nov 2014

Alexander Oh

University of Manchester 3D Diamond Group / RD42

Challenges Ahead

• Luminosity upgrade of the LHC will increase the luminosity by O(2).

- Luminosity ~ Radiation damage
- Need new technologies in the innermost layers to survive the radiation levels.
- Candidates technologies:
 - 3D silicon
 - Diamond
- Why not: 3D diamond

Motivation

Planar 3D 500µm

Drift distance comparable to mean free path of charge carriers in irradiated diamond.

The University of Mancheste

Why 3D?

- Enhanced radiation
 hardness for **3D geometry** proven with
 Silicon.
- Since this is due to geometry the same should be applicable to **Diamond**.

3D Diamond Research

Lasered graphitic structures in pCVD ('10)

Single crystal with column structure ('11)

Femto second laser for improved graphitic electrodes ('12)

Improved laser processing and TCAD simulation ('13)

3DD University of Manchester, CEA Saclay, CERN, ETH Zurich, Ohio State University

Several Prototypes tested at Diamond Light Source ('09,'10,'11, '13) CERN test beam ('12) RBI proton beam ('13).

Developments in 2014

Laser

- After moving to another lab laser broke down.
- Took a while to find the fault.
- Power supply related.

1824

- Fix found as of two weeks ago.
- Reproduce graphitisation process.
- Analysis •
 - Finalised analysis of CERN test beam data, publication in final sign-off.
 - Synchrotron and RBI proton micro-beam data still in analysis.

Simulation •

- Working on TCAD simulation validation.
- Parameter optimisation to match experimental data.
- Validation of test-beam results.

<u>Laser</u>

University of Manchester, Laser Processing Research Center.

- Wavelength = 800 nm
- Repetition rate = 1 kHz
- Pulse duration = 100 fs
- Spot size = $10 \,\mu m$
- Pulse Energy ~ 1 μJ

Fabrication

MANCHESTER

University of Manchester, Laser Processing Research Center.

- Column formation starts at the bottom.
- "Pulp" formation at the seed side.
- Small "craters" observed on the exit side due to lower density of column material.

<u>Laser</u>

University of Manchester, Laser Processing Research Center.

In repair most of 2014

- Faulty power supply after move to new location diagnosed.
- Improvements to setup:
 - In-situ camera to track progress.
 - New bolometer.

CERN Test-beam

Proto-type

- Strip detector with back side contact
- 3D metal only pattern
- 3D metal + graphitic columns
- Cubic cell base size 150µm
- 99 cells
- Measure response with 200 GeV protons.
- <u>Finalised analysis Nov 2014.</u>
 - Paper draft in circulation.

Fabrication

Metallisation

- Photo-lithography, lift-off.
- Ti-Pt-Au sputter.
- Annealing + Oxygen plasma treatment.

- Yield of working columns ~ 90%.
- Resistivity ~ 1 Ω cm.

Test-beam

CERN Test-beam set-up

- SPS H6 beamline
 - Protons with p = 120 GeV/c.
 - spill every 40 sec
 - ~4k events per spill.
- Silicon telescope for track reconstruction
 - 4 planes of X and Y strips.
 - Resolution few O(μm)
 - Two scintillator (~1 cm²), trigger on coincidence.
- DUT primed with β from Sr⁹⁰ before measurement.

- The Univers of Manchest
- CERN Test-beam set-up
 - Raw signals
 pedestal
 subtracted.
 - Common mode correction.
 - Noise after corrections 91e.

Analysis steps

- **1.1M** events recorded $U_b(Strip) =$ 500V $U_b(3D) = 25V$
 - Require single cluster in each Siplane and a good track fit.
 - Plot average charge of primary cluster charge in diamond at predicted position.
 - Define fiducial regions for strip and 3D regions.

Test-beam Analysis

Reconstruction:

- Require a single Silicon track.
- Take cluster charge of three strips.
- Require a hit in the diamond (clustered analysis)
- Build cluster charge at track position on the diamond (transparent analysis).
- <u>3D vs Strip show similar MP</u>
 - lower shoulder at 3D due to imperfect cells.
- <u>3D vs Phantom</u>
 - ~1/3 signal in phantom
 - lower should coincides -> missing read-out columns in 3D.

signal / electrons

Test-beam Analysis

- Observed negative signals near some "bias columns".
- Strongest negative signal on 2nd closest strip to track.
- Probably due to missing bias columns?

G H I row of cell

Test-beam Analysis

TCAD simulation

1824

MANCHESTER

- 3D simulation of defect cells including metallization pattern.
- trap free
- look at signal of X ns to aproximate traps.
- Computing intensive (O(10)h on 10 cores).
- Results
 - Qualitative agreement of negative signal observation.
 - Due to weighting field shape.
 - Similar behaviour observed in 3D silicon.

Analysis steps

- Identify continuous region of intact cells for analysis.
- Exclude contribution of negative signals.
- Average charge
 Strip: 16.8ke
 3D: 15.9ke
- MP: Strip: 14.7ke 3D: 15ke

3D and Strip show comparable response. Conclusion -> 3D works!

Alexander Oh, University of M

<u>Results</u>

- Residual distribution r=x_{3D}-x_{rec}
 - RMS ~40μm
 - expect digital = 43um
- Overlay of cells
 - See degradation of signal in column areas.
 - Consistent with 6µm column width and metallization signal pick-up.

Summary

- The Univer of Manches
 - Laser operational again (hopefully!).
 - Analysis of 3D single crystal finished and close to publication.
 - –More test-beam data is waiting for analysis!
 - •The next steps are :
 - -Further improvement of the laser process.
 - -Study of the radiation hardness.

