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M. Guthoff 

Overview 

•  Radiation damage to diamond, expected and 
observed. 

•  The polarization effect 
•  Electric field measurements with the Transient 

Current Technique 
•  Modeling the electric field and simulating the TCT 

pulse 
•  Preparations for irradiation campaign 
•  Requirements on un-irradiated sCVD diamonds 
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Radiation damage in diamond 

•  Irradiation tests of 
RD42 collaboration. 

•  Collected charge 
decreases 
hyperbolically 
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DPA model 

•  Displacements per Atom in diamond. 
•  Number of displacements calculated for different particle 

types and energies. 
•  Possibility to scale mixed field fluence to normalized 

particle 
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Radiation Damage to single crystal, 
observations in CMS 

•  Decrease of signal with relatively low fluences. 
•  Space charge trapped at defects deform electric field and decrease 

signal efficiency. So called: Polarization 

FLUKA simulated equivalent fluence 
•  Data from 2011, corresponds to ~6fb-1 

•  In HL-LHC expect ~300fb-1 per year 

CCD calculated by: 
•  Measured signal is detector current 
•  Compare signal with luminosity 
•  Assume full CCD at zero fluence. 
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Signal decrease not perfectly hyperbolic 

2011	  data,	  
total	  luminosity	  6D-‐1	  
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Polarization model 

•  Positive charge trapped at cathode 
•  Negative charge trapped at anode. 
•  Deformation of electric field creates low/zero-field regions. 

Ø  Reduced sensor efficiency 

•  Measurements of electric field required. 
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Transient Current Technique 

•  Alpha particles are used to introduce charge carriers at 
the diamond surface. 

•  Charge carriers drift along the electric field with    
vdrift ~ E-field. 

•  Measure signal with high bandwidth amplifier and scope.        
ISignal ~ vdrif ~ E-field. 
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TCT measurement procedure 

•  Apply Sr90 at zero HV. 
Ø  All remanent electric field is 

removed 
•  Apply Sr90 and Alpha source 

simultaneously 
•  Start measurement and fast 

HV switch on. 
Ø  Initial state of detector is 

completely polarization free. 
•  Continuously measure single 

traces 
Ø  Deformation of electric field 

with time. 
•  Comparative study requires 

well defined conditions. 
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M. Guthoff 

TCT pulse polarizing 

•  Change in pulse shape over time 
–  Reduction of collected charge due to E-field deformation. 

•  Qualitative understanding of E-field 
•  De-convolution of drift effects impossible 

Ø  No quantitative understanding. 
•  Simulate E-field and TCT carrier drift to reproduce measurement. 

Ø  Quantitative understanding of E-field and space charge. 
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Polarization model 
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Simulation model 

•  Estimation of TCT pulse for given electric field. 
•  Inject charge created by alpha and transport through 

E-field. 
Ø Match simulation to measured pulse to understand 

electric field distribution during measurement. 
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Simulated TCT measurement 

•  Space charge distribution needs to 
be asymmetric to explain data. 
(asymmetric E-field) 

•  Implies stronger trapping of holes.  
•  TCT simulation reproduces well 

the measurement. 
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Measurement (38.3 min.)
Simulation
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Highly polarized state, 
HV off experiment 

1.  Apply Sr90 source under HV for some 
time.  
Ø  Diamond is fully polarized 

2.  Remove Sr90, and then switch off HV. 
Ø  Field due to space charge persists.  

3.  Measure with alpha on side 1 and then 
on side 2. 
Ø  Positive and negative field regions found. 
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Alternating polarity TCT 

•  Polarization filed counteracts Electric field. Changing E-field 
polarity with a few Hz avoids polarization field. 

•  Bulk still charges up, but with a more flat distribution. 
•  No “zero field” regions, charge carrier transport in whole bulk. 
•  Recover charge collection efficiency (compared to constant HV) 
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Limitations of simulations model 

•  Long tails of TCT pulses in polarized state 
•  Charge carrier distribution influences electric field 
•  Charge carrier density cannot be simulated in 1-D 

Ø  In the future T-CAD simulations (see talk F. Kassel) 
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Irradiation campaign 
•  Neutron and proton irradiations in small steps. 

–  Aim at ~5x1012 cm-2 per step. 
•  TCT measurements in between steps. 

–  Controlled radiation environment for comparative results. 
•  Require perfect diamond at the start 

–  CCE = 100%, no electric field deformations at low E fields. 
•  Potential follow-up study: Find temperature for trap 

mobility with annealing study. 
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New sCVD diamond quality 

•  Many new sCVD diamonds bought by CMS and DESY for 
new BCM1F detector (see talk W. Lohmann). 

•  Few new sCVD diamonds purchased for irradiation 
campaign. 

•  Diamonds are of varying quality 
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New sCVD - IV & CCE 

•  To overcome polarization, need diamonds that can hold more than 2 V/um. 
•  Some show high currents.  

–  Could be surface issue. Re-metalizing can lower leakage, but not remove it. 
•  Several new diamonds with full charge collection at extremely low fields. 

Measurements	  by	  
DESY	  Zeuthen	  
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Summary 

•  Searching for ways to ensure radiation hardness of 
diamond. 

•  TCT measurements as presented are the key to 
understand performance of diamond after 
irradiations. 
–  Simple 1-D model limited to reproduce charge drift. 
Ø Silvaco TCAD simulations by F.Kassel in next talk. 

•  Diamond quality of high importance. 
–  Study radiation damage effects requires high purity. 
–  Overcoming polarization requires high field stability. 
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Rate dependency of efficiency 

0	  	  	  	  	  	  2.7	  	  	  5.4	  	  	  	  8.1	  	  	  10.8	  	  	  13.6	  	  16.3	  	  19.0	  	  x	  107	  
Simulated	  MIPs	  [cm-‐2s-‐1]	  

"   Leakage	  current	  readout	  	  	  
(E~0.5V/um)	  

"   Signal	  efficiency	  lower	  at	  high	  
rates.	  

"   Possible	  explana/on:	  
Polariza/on	  less	  strong	  at	  low	  
rates.	  

Data	  from	  one	  single	  LHC	  fill	  

Luminosity	  
scan	  at	  end	  of	  
fill	  

Normal	  luminosity	  span	  of	  this	  fill.	  (starts	  
with	  highest	  luminosity.)	  


