

Understanding (and mitigating) radiation damage in diamond detectors at CMS

Moritz Guthoff¹, Florian Kassel^{1,2}, Wim de Boer², Anne Dabrowski¹

¹CERN ²KIT Karlsruhe

19th November 2014 3rd ADAMAS workshop, Trento

Overview

- Radiation damage to diamond, expected and observed.
- The polarization effect
- Electric field measurements with the Transient Current Technique
- Modeling the electric field and simulating the TCT pulse
- Preparations for irradiation campaign
- Requirements on un-irradiated sCVD diamonds

Radiation damage in diamond

- Irradiation tests of RD42 collaboration.
- Collected charge decreases hyperbolically

DPA model

M. Guthoff, W. de Boer, S. Müller: **Simulation of beam induced lattice defects of diamond detectors using FLUKA**, arXiv:1308.5419, NIM A: Vol.735, Pages 223-228, 2014.

- Displacements per Atom in diamond.
- Number of displacements calculated for different particle types and energies.
- Possibility to scale mixed field fluence to normalized particle

Radiation Damage to single crystal, observations in CMS

CCD calculated by:

- Measured signal is detector current
- Compare signal with luminosity
- Assume full CCD at zero fluence.

FLUKA simulated equivalent fluence

- Data from 2011, corresponds to ~6fb⁻¹
- In HL-LHC expect ~300fb⁻¹ per year

Signal decrease not perfectly hyperbolic

- Decrease of signal with relatively low fluences.
- Space charge trapped at defects deform electric field and decrease signal efficiency. So called: Polarization

Polarization model

- Positive charge trapped at cathode
- Negative charge trapped at anode.
- Deformation of electric field creates low/zero-field regions.
 - Reduced sensor efficiency
- Measurements of electric field required.

Transient Current Technique

- Alpha particles are used to introduce charge carriers at the diamond surface.
- Charge carriers drift along the electric field with v_{drift} ~ E-field.
- Measure signal with high bandwidth amplifier and scope.
 I_{Signal} ~ v_{drif} ~ E-field.

TCT measurement procedure

- Apply Sr90 at zero HV.
 - All remanent electric field is removed
- Apply Sr90 and Alpha source simultaneously
- Start measurement and fast HV switch on.
 - Initial state of detector is completely polarization free.
- Continuously measure single traces
 - Deformation of electric field with time.
- Comparative study requires well defined conditions.

TCT pulse polarizing

- Change in pulse shape over time
 - Reduction of collected charge due to E-field deformation.
- Qualitative understanding of E-field
- De-convolution of drift effects impossible
 - > No quantitative understanding.
- Simulate E-field and TCT carrier drift to reproduce measurement.
 - > Quantitative understanding of E-field and space charge.

Polarization model

Simulation model

- Estimation of TCT pulse for given electric field.
- Inject charge created by alpha and transport through E-field.
- Match simulation to measured pulse to understand electric field distribution during measurement.

19th Nov 2014

Understanding radiation damage in diamond detectors

Simulated TCT measurement

- Space charge distribution needs to be asymmetric to explain data. (asymmetric E-field)
- Implies stronger trapping of holes.
- TCT simulation reproduces well the measurement.

Highly polarized state, HV off experiment

- 1. Apply Sr90 source under HV for some time.
 - Diamond is fully polarized
- 2. Remove Sr90, and then switch off HV.
 > Field due to space charge persists.
- 3. Measure with alpha on side 1 and then on side 2.
 - Positive and negative field regions found.

sCVD_2011, HV off (was 600V) drift in positive field

Alternating polarity TCT

- Polarization filed counteracts Electric field. Changing E-field polarity with a few Hz avoids polarization field.
- Bulk still charges up, but with a more flat distribution.
- No "zero field" regions, charge carrier transport in whole bulk.
- Recover charge collection efficiency (compared to constant HV)

Limitations of simulations model

- Long tails of TCT pulses in polarized state
- Charge carrier distribution influences electric field
- Charge carrier density cannot be simulated in 1-D
 - In the future T-CAD simulations (see talk F. Kassel)

BRI

Irradiation campaign

- Neutron and proton irradiations in small steps.
 - Aim at ~5x10¹² cm⁻² per step.
- TCT measurements in between steps.
 - Controlled radiation environment for comparative results.
- Require perfect diamond at the start
 - CCE = 100%, no electric field deformations at low E fields.
- Potential follow-up study: Find temperature for trap mobility with annealing study.

New sCVD diamond quality

- Many new sCVD diamonds bought by CMS and DESY for new BCM1F detector (see talk W. Lohmann).
- Few new sCVD diamonds purchased for irradiation campaign.
- Diamonds are of varying quality

Example of unirradiated sCVD showing E-field deformations

New sCVD - IV & CCE

Measurements by **DESY Zeuthen**

- To overcome polarization, need diamonds that can hold more than 2 V/um.
- Some show high currents.
 - Could be surface issue. Re-metalizing can lower leakage, but not remove it.
- Several new diamonds with full charge collection at extremely low fields.

Summary

- Searching for ways to ensure radiation hardness of diamond.
- TCT measurements as presented are the key to understand performance of diamond after irradiations.
 - Simple 1-D model limited to reproduce charge drift.
 - > Silvaco TCAD simulations by F.Kassel in next talk.
- Diamond quality of high importance.
 - Study radiation damage effects requires high purity.
 - Overcoming polarization requires high field stability.

BACKUP

19th Nov 2014

Understanding radiation damage in diamond detectors

Rate dependency of efficiency

- Leakage current readout (E~0.5V/um)
- Signal efficiency lower at high rates.
- Possible explanation: Polarization less strong at low rates.