

Silicon On Diamond Research

Silvio Sciortino Department of Physics and INFN of Florence

INO-CNR

December 16th, 2013

Summary

- Silicon-On-Diamond Detectors. Prototypes 0 and 1
- MAPS -On-Diamond
- 3D-diamond detectors (next talk by Stefano Lagomarsino)

Silicon-On-Diamond Detectors

Chip-On-Diamond Sensor: diamond connected to the readout electronics by Through Silicon Vias (TSV)

External electronics. Few TSV connected to one external preamplifier

```
All the other TSV are biased at V_{in}.
The TSV are insulated from the bulk.
The silicon bulk is biased at V_{bulk}
Diamond is biased at V_{bias}-V_{in}
```

The ohmic contacts on the free diamond surface and the buried diamond surface (TSV bottom) are fabricated by laser graphitization

SOD prototype 0 (step 1)50 μm Si500 μm Dia

1 silicon-diamond laser bonding of 500 μ m diamond with 50 μ m Si 5x5 mm² plates (Florence);

S. Lagomarsino, G. Parrini, S. Sciortino, M. Santoro, M. Citroni, M. Vannoni, A. Fossati, F. Gorelli, G. Molesini, and A. Scorzoni, Silicon-on-diamond material by pulsed laser technique, Appl. Phys. Lett. 96, 031901 (2010).

2. Laser drilling of holes (IIT)

500 µm Dia

TSV matrices have been implemented. They differ for TSV diameters, pitches and diamond contact techniques.

At the center of each matrix the cluster of TSVs to be connected to the external preamplifier.

TSVs are connected together by metal masks (not visible)

SOD prototype 0 (step 3) 1μm Oxide 50 μm Si 500 μm Dia

3. PECVD formation of a 1 μ m SiO₂ layer

& removal of the oxide film at the bottom of the TSV (IIT)

	0 0 0 0 0 0 0		· · · · · · · · · · · · · · · · · · ·		0 0 0 0	
BORV	0	X33	0	500µr	- 0 n	00000000000000000000000000000000000000

X1,700

30kV

10µm

11 40 SEI

100 µm

SOD prototype 0 (step 4)

4 Growth of ohmic contacts by nanosecond laser irradiation at the bottom of the TSV holes and on the diamond side (Florence)

SOD prototype 0 (step 5)

5 Al metallization of the TSV cluster to be connected to the PA and all the other TSVs (INFN Perugia)

SOD prototype 0 (step 6)

6 Final step: filling of the TSV with Ag nanopowder and sintering at 220 °C, @ IIT

SOD prototype 0 Test with beta source

1

्र इन्

Test board

SOD prototype 1

Technology: CMOS 0.35 mm.

Size: $2.9 \times 3.1 \text{ mm}^2$.

test channels

18 channels. 16 are to be connected to diamond by TSV and the remaining two are for test purpose Overall gain: 150 mV/fC Peaking time: 500 ns ENC= 135 e+ 33 e/pF

Thinned to 40 μm and bonded to

TSV are underway @ iit

Each pad has 4 metal layers ASIC 350 nm architecture

COMPOSITIONAL ANALYSIS

Only silicon at the bottom of the drilled hole

COMPOSITIONAL ANALYSIS

Monolithic Active Pixel Sensor On Diamond?

In order to increase the MIP signal we are thinning RAPSO3 chips down to about 25 μ m in order to bond them to a diamond substrate, which when electrically biased can inject charges in proximity of the potential well

RAPS03 Monolithic Active Pixel Sensor On Diamond

256x256 pixel matrix (10x10 µm)

Four 128x128 submatrices.

Two submatrices have a small Photodiode: 4% of pixel surface) to minimize the sensing capacitance

The other two have a large photodiode (77% of the pixel surface) to maximize the sensing area.

The estimated effctive diffusion region is below 30 μ m;

RAPS thinned @ 25 & 20 μm

Backside profilometry R_a ~4 nm Peaktopeak~50 nm

Choose the best polished pCVD diamond

+5.09 mm -8.03 0.264 mm 0.000 mm 0.352

Very Good

RAPS thinned @ 25 µm bonded on diamond (SOD_40)

Adhesion

SOD_40

SOD_41

Without Au buffer

Au buffer

TESTS ON SOD_40 ⁹⁰Sr beta irradiation

3x3 pixel matrix

Response to beta @ OV (red) & 500 V (blue)

Response to beta vs. bias voltage

TESTS ON SOD_40 ⁹⁰Sr beta irradiation 40-30-20-10-10 0 35-30-25-20-15 10-5-7 0--5-10 8 6 2 0

SOD_40: Two events @ OV, one with only one pixel and one with several pixels

Fraction of signal @ 0 V for a 9 x9 matrix around the pixel more hit (30 %) .

In practise, the 7x7 sum yields most of the signal This shows that a limited amount of pixel is needed to obtain the total collected charge

Fraction of signal @ 500 V for a 9 x9 matrix around the pixel more hit (30 %) .

Silicon On Diamond Research

Thank you for your attention!

INO-CNR

December 16th, 2013