

Efficiency and mechanism of dislocation density reduction during heteroepitaxial growth of diamond for detector applications

2nd ADAMAS Workshop @ GSI 2013-12-15 - 2013-12-17

Michael Mayr, Christian Stehl, Martin Fischer, Stefan Gsell, Matthias Schreck

- Growth and nucleation of heteroepitaxial diamond layers on Ir(001)
- Defects in crystals
- Dislocation density reduction by increasing thickness
- Raman and PL measurements on diamond cross sections
- Epitaxial lateral overgrowth (ELO)

Bias enhanced nucleation (BEN)

Bias enhanced nucleation (BEN)

 bombardment of substrate surface with positively charged ions from a hydrogen / methane plasma

Universität

Augsburg

- electric field ~ several kV/cm
- \rightarrow nucleation density reaches

<u>10¹¹ cm⁻²</u>

Multi-layer-system Ir/YSZ/Si(001)

- Si: + high quality crystals
 - + large size
 - + low price

 \rightarrow Low thermal stress!

but: diamond directly on silicon never reached single crystal quality

<u>Multi-layer-system (Ir/YSZ/Si(001))</u> YSZ: yttria (Y_2O_3) - stabilized zirconia (ZrO₂)

Universität

Augsburg University

Lattice misfit related to diamond ~34,3% for Si and ~7,6% for Ir

Diamond on Ir:

- + extremely high density of oriented nuclei
- + low mosaic spread of grains

GROWTH OF SINGLE CRYSTAL IRIDIUM ON SILICON VIA OXIDE BUFFER LAYERS

5

Growth by "Microwave enhanced plasma chemical vapour deposition" (MWPCVD)

Universität Augsburg University

Schematic view and photograph of a CVD reactor.

- Growth and nucleation of heteroepitaxial diamond layers on Ir(001)
- Defects in crystals
- Dislocation density reduction by increasing thickness
- Raman and PL measurements on diamond cross sections
- Epitaxial lateral overgrowth (ELO)

Defects in crystals

Point defects (0D)

Vacancies, interstitials, antisites, ...

Neu et al., New J. Phys. 13 (2011) 025012

http://en.wikipedia.org/wiki/Crystallographic_defect

Line defects (1D)

Edge/screw dislocations, mixed types

Hull & Bacon, Introduction to dislocations, 1984, Pergamon

Planar defects (2D)

Stacking faults, grain boundaries, ...

http://amadm.unileoben.ac. at/ReyesHuamantinco_And rei_B_2.jpg

C. Kittel: Einführung in die Festkörperphysik, 14th ed. (2006)

Bulk defects (3D)

Voids, precipitates, ...

http://www.tf.unikiel.de/matwis/amat/mw_for_et/kap_4 /illustr/korngrenze1.gif

Symmetric small angle tilt boundary in cubic lattice (1 degree of freedom, in general: 5)

- Growth and nucleation of heteroepitaxial diamond layers on Ir(001)
- Defects in crystals
- Dislocation density reduction by increasing thickness
- Raman and PL measurements on diamond cross sections
- Epitaxial lateral overgrowth (ELO)

Change during growth process

0.6 µm

8 µm

M. Schreck et. al. Journal of Applied Physics **91**, 2002

34 µm

Plan-view TEM images of epitaxial diamond layers grown on $Ir/SrTiO_3(001)$ with increasing thickness.

 \rightarrow no longer isolated mosaic blocks bounded by polygonized network of grain boundaries

Highly oriented mosaic crystal becomes defective single crystal!

Drawing of the defect lines for 34 μ m.

<30nmT

Variation of the defect structure with film thickness

Phase 3: transition to single crystal layer

single crystal region with isolated and clustered dislocations mosaic block region

highly oriented diamond

layer: individual mosaic

blocks separated by small

Phase 2:

 \rightarrow possible only if approach distance between two TDs with different Burgers vectors reaches a critical value r_a.

During growth, dislocations

Changing distance can happen by means of glide, climb or cross slip of dislocations. No real movement of dislocations but "effective" climb, glide ... during growth

Phase 1:

isolated diamond crystallites on iridium layer

Variation of etch-pit density with crystal thickness

Variation of the Raman and luminescence signal with crystal thickness

RAMAN PEAK WIDTH (cm⁻¹) (mrl) NOILISOd - 200-11.5 7.5 5.5 9.5 3.5 1.5 200 LATERAL 150 (a) 100 Ó 200 400 600 800 1000 RAMAN PEAK WIDTH (cm⁻¹) 11 2.4 10-9. 2.2 8 7 2.0 6 480 520 560 5 3. 2 200 400 600 800 1000 0 LUMIN. BACKGROUND (a.u.) 0.8 0.6 0.0 200 400 600 800 1000 CRYSTAL THICKNESS d (µm)

Nitrogen is switched off at d=500 µm

growth side

Drop in Raman FWHM, when nitrogen flux is switched off

→ Broadening caused by point defects generated by adding nitrogen?

But also: Decrease of Raman FWHM with increasing thickness of the sample!

Possibility of creating a "calibration curve" of Gaussian broadening vs. etch-pit density with previous data?

C. Stehl et al. APL **103**, 151905 (2013)

Correlation of Gaussian broadening and etch-pit density

- Growth and nucleation of heteroepitaxial diamond layers on Ir(001)
- Defects in crystals
- Dislocation density reduction by increasing thickness
- Raman and PL measurements on diamond cross sections
- Epitaxial lateral overgrowth (ELO)

Raman- and PL-measurements on diamond cross sections

SEM-image of the cross section of a (001)-diamond layer

 \rightarrow bright and dark stripes are risers/terraces

 \rightarrow PL-/Raman-mapping of the orange marked section

Measurements performed by C. Stehl

Raman- and PL-measurements on diamond cross sections

normalized SiV-intensity

Raman-FWHM (cm⁻¹)

 \rightarrow Enhanced SiVintensity in dark stripes \rightarrow Enhanced NV⁰intensity in dark stripes \rightarrow defect bands approximately in growth direction (tilt of ~12°)

- Identification of dark/bright stripes as risers/terraces?
- Correlation of Raman-FWHM broadening with etch-pit/dislocation density
 → Application of formerly obtained correlation data

Measurements performed by C. Stehl

Dislocation network

Correlation of gaussian broadening with etch-pit density (using formerly obtained curve for calibration):

The estimated deduced equivalent etch-pit density varies by an order of magnitude over the measured cross section!

→ Variation caused by dislocation networks which develop out of grain boundaries with extended growth.

Dislocation network

Image of growth surface:

Clustering of dislocations in bands

- Growth and nucleation of heteroepitaxial diamond layers on Ir(001)
- Defects in crystals
- Dislocation density reduction by increasing thickness
- Raman and PL measurements on diamond cross sections
- Epitaxial lateral overgrowth (ELO)

Further extended growth not practical \rightarrow change of strategy needed!

Thank you for your attention!

Acknowledgements:

GSI

European Union

Universität Augsburg

