

Current Status of the Fast Beam Condition Monitor Upgrade at CMS

Jessica Leonard DESY-Zeuthen

Dec. 17, 2013 ADAMAS Workshop

Beam Condition Monitor

Context

- LHC running at unprecedented beam energies and intensities
- Even small beam losses may cause damage to CMS detector components

Purpose of Beam Condition Monitor

- Monitor particle fluxes near the beam pipe
- Ensure sufficiently low inner detector occupancy for data-taking
- Detect beam loss conditions
- Initiate reactions when necessary (beam abort)

Fast Beam Condition Monitor BCM1F (up to 2012)

- 8 5mm x 5mm single-crystal CVD diamonds (Element 6) positioned around the beam-pipe, radial distance 4.5 cm, 1.8 m from interaction point
 - Diamond \rightarrow no cooling, robust, radiation-hard
 - Sensor module: diamond, radiation-hard preamplifier, optical driver

Bunch-by-bunch information on flux of beam halo and collision products

- Monitor condition of beam: ensure low radiation for silicon tracker
- Calculate luminosity

Readout independent of CMS DAQ

BCM1F Electronics

Beam Arrival Times

Small geometric acceptance: only "see" small fraction of bunches

BCM1F Upgrade

Implications of LHC upgrade for BCM1F

- Radiation: Luminosity 10³⁴ cm⁻²s⁻¹ → BCM1F charged particle flux ~3x10⁷ cm⁻²s⁻¹
- 25 ns bunch spacing
- High hit rate
- 24 diamonds x 2 metallization pads per diamond = 48 channels for higher dynamic range
- Minimize and deal with radiation damage
- Scale up full system from 8 channels
- Faster electronics
- Integrate readout with other luminosity subsystems

Upgrade Carriage Design

Old carriage

BCM1F Diamonds for Upgrade

E

larization

Significant issue in Run I: radiation damage

- Effect: diamond polarization decreases efficiency
- Primary line of defense: higher HV

Other possibilities

- Red light illumination
- Alternating voltage polarity
- Old and new diamonds recently characterized with split metallization (talk from Maria Hempel)

E

Vonizing particle

Improving Front End Electronics

Several sources of inefficiency in front-end electronics, especially for (rare) high-amplitude signals

New Fast Front End ASIC

Developed by AGH - Krakow

IBM CMOS8RF 130nm technology

~50 mV/fC charge gain, < 1ke- ENC

D. Przyborowski

Fast ASIC with Full Chain

Read out test pulses to ASIC with optical transmission board

Radiation damage of laser driver visible in decreasing signal amplitude

 25% gain lost in BCM1F optical transmission after 30 fb⁻¹, fluence 8.78x10¹³ cm⁻² (24 GeV protons)

Improving Optical Chain

Improvements

- Multi-amplitude test pulse to monitor linearity of response
- Laser diodes on carriage arm (lower radiation)
- Temperature sensor to account for optical response to temperature
 - Bragg grating: wavelength of transmitted light sensitive to temperature changes
- Temperature stabilization (other subsystems)

Backend Concept for Upgrade

Use "tried and true" discriminator path for initial running while commissioning digitizer path

LUT: create coincidences between all 48 channels

RHU for readout (later slide)

Upgrading Back End Electronics

Two parallel tracks:

Discriminator path

Fixed-threshold vs. constantfraction

Digitizer with fast peak-finding algorithms

Constant-fraction: better time resolution

Fixed-threshold: lower deadtime

Preliminary conclusion: deadtime outweighs resolution -> use FTD (CAEN V895) for primary path but install CFD to run and test in parallel Identify pulse arrival time and peak height, distinguish signals close in time (overlapping)

Development of algorithms ongoing

Current hardware choice: uTCA ADC FMC mezzanine system. Multiple FMC candidates, to be tested

Upgrading Data Acquisition: RHU

Recording Histogram Unit (RHU): Readout of full-orbit histograms

- No deadtime
- 8 histogramming input channels
- Bins of 6.25 ns = 4/bunch bucket (14k bins/orbit)
- Bunch clock, orbit clock, beam abort
- Configurable sampling period
- Ethernet readout

Developed at DESY-Zeuthen

Prototype installed Sept. 2012, validated during 2012-2013 run

Next revision: Optical fiber input (timing signal), ECL input mezzanine connection

Rev. 2 prototype produced by end of January

Upgrading Data Acquisition: LumiDAQ

- BCM1F output hit rates acquired via LumiDAQ system
 - Expansion of already-existing structure
 - Combines data from all CMS luminosity detectors
- Common timing signal distributed via optical fiber
 - Hit count integration interval
 - Synchronization important

Common data format: 3564 bins

Luminosity Algorithms for Upgrade

Simple combinations of sensors used to measure luminosity in Run I

> Saturation at high pileup levels foreseen post-upgrade

New algorithms needed, development via simulation

probability

Conclusions

Many improvements in the works to increase effectiveness

- Carriage: 48 channels, single PCB
- Diamond sensors: minimize effects of radiation damage using higher voltage
- New fast front end ASIC to reduce inefficiencies
- Optical chain: lower radiation for laser driver, multi-amplitude test pulses
- Back end: Discriminator path in parallel with digitizer peak-finding
- RHU, LumiDAQ for collection of hit rates
- Algorithms for luminosity measurement
- Future plans
 - Full sensor chain to be tested in January at test beam
 - Synchronization of readout electronics within timing/LumiDAQ framework

FE ASIC specs

Schematic diagram of BCM1FE channel

- IBM CMOS8RF 130nm technology
- 2.5 V power supply (high voltage enabled design)
- Power consumption \sim 11 mW/ch (10mW of output buffer)

FE ASIC Fast MIPs

Distinguishability of MIPs wi 12.5 ns interval

- $\label{eq:polarization} \textsf{Polarization} \rightarrow \textsf{Inefficiency}, \textit{changes with time}$
- Change in response depends on HV, luminosity
- Ongoing investigation
 - Recent study: thinning diamond appeared to improve polarization, more study needed

Important to characterize systematic error on luminosity calibration (TIE IN SLIDE WITH DIAMOND STUFF)

Improving Timing **Performance: Discrimination**

Current discriminator: CAEN v258B fixed-threshold discriminator

- Does not discriminate pulses closer than ~12 ns: deadtime causes loss of consecutive signals
- Triggers pulses of different amplitudes at different times: "time walk" ΔT ~12 ns

CFDs significantly improve on FTD time walk

- v812: better time resolution for trigger of single pulse
- CFD950: better resolution between consecutive pulses

E IN WITH UPGRADED BACKEND DESY

Improving Timing Performance: Discrimination

Current discriminator: CAEN v258B fixed-threshold discriminator

- Does not discriminate pulses closer than ~12 ns: deadtime causes loss of consecutive signals
- Triggers pulses of different amplitudes at different times: "time walk" ΔT ~12 ns
- Tested two constant-fraction discriminators: CAEN v812, PSI CFD950
- Both CFDs significantly improve on FTD time walk
 - v812: better time resolution for trigger of single pulse
 - CFD950: better resolution between consecutive pulses

