ADAMAS ADVANCED DIAMOND ASSEMBLIES

1st Workshop GSI 16 – 18 December 2012
Colin Wilburn, Director
Micron Semiconductor Ltd, 1 – 5 Royal Building, Marlborough Road, Lancing, West Sussex, BN15 8SJ, United Kingdom
Advantages Synthetic Diamond Detectors

- Unique Properties
 - Intrinsic, Diamond is an insulator at room temperature
 Electron and hole higher than silicon, sub nanosecond
 - Diamond RAD HARD 2 orders better 10.17 p/cm²
 - Comparison to Silicon - N-type FZ and N-type Oxygenated 10.15 p/cm²
 - P type Silicon benefit, 150um, from charge multiplication 10.16 p/cm²
 - Even thinner 100um P-type pixels at CERN CLIC/40um target.
 - Micron’s NASA Mission: Solar Probe Plus large 10 um thick detector with a uniformity of 0.3um, diamond films on silicon would be similar
 - High refractive index compared to glass 2.4-1.5, perfect for gems
 - Extreme Surface Hardness ideal for cutters/ drills/ sanders
 - Heavy Ion detection, 1 nanosecond, 10.10 p/cm² survival, Si 10.8 p/cm²
 - High Thermal Conductivity benefits electronics power dissipation
 - Solar Blind, sensitive in deep ultraviolet
 - Low dielectric low capacitance load benefits preamplifier noise
Disadvantages Synthetic Diamond Detectors

- Disadvantages:
 - Small Size Single Crystal Diamond 5mm x5mm difficult to grow.
 - Little or NO IMPROVEMENT in size in past decade
 - Cutting Difficult, laser essential.
 - Polishing an art form, preparation, motion, materials.
 - Metal Film technology, interfaces,
 - Very expensive single crystal
 - Single Crystal Detector Grade requires << ppm nitrogen
 - Intrinsic Polysilicon (Ohmic) Boron doped (Shottky) cost effective
 - Pumping effect: never irradiated in virgin state: moderate irradiation fluence, signal output charge distance increases
 - Long term reliability REQUIRED, to replace BEST EFFORT.
 - Commercial Warranty important ,12 months minimum.
 - Current Designs requires high voltage to collect charge
 - No N-type (DONOR) diamond on the market.
Single and Polycrystalline Diamond Detector Specification

- No Dislocations
- No visible scratches
- No sub surface damage from polishing!
- Defects - no inclusions visible at 50x magnification

Size of Substrate - ± 0.1mm
Thickness - 50 micron ± 15 micron
Surface Roughness < 5nm
Twin Defects - none
Grain Size > 100 microns (Poly)
N impurities < 5ppb typical
Cracks - none
Edge chips - none > 20 microns
Parallelism - within thickness level
Metal Contamination < 1ppb
Voids or Pits - None
SP² level - not detectable

Charge Collection Efficiency 40% for poly and 96% for Single Crystal
<table>
<thead>
<tr>
<th>Properties</th>
<th>Graphite</th>
<th>SC Diamond</th>
<th>Polycrystalline / Electronic</th>
<th>BD Diamond</th>
<th>Thermal Grade D</th>
<th>Thermal DLC</th>
</tr>
</thead>
<tbody>
<tr>
<td>SP2</td>
<td>100%</td>
<td>None, SP3 only</td>
<td>None, SP3 only</td>
<td>SP3 + B</td>
<td>very little</td>
<td>5-10%</td>
</tr>
<tr>
<td>Fabrication</td>
<td>Natural</td>
<td>PECVD</td>
<td>PECVD</td>
<td>PECVD</td>
<td>PECVD</td>
<td>ARC/PECVD</td>
</tr>
<tr>
<td>Grain Size</td>
<td>Single Crystal</td>
<td>100microns</td>
<td>~50 microns</td>
<td>~50 microns</td>
<td>Amorphous</td>
<td></td>
</tr>
<tr>
<td>Collection Efficiency</td>
<td>100%</td>
<td>60%</td>
<td>-</td>
<td>~2-10%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electron Mobility</td>
<td>4500</td>
<td>2500</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Breakdown</td>
<td>4 MV/cm</td>
<td>0.7</td>
<td>> 0.7</td>
<td>>0.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cost /mm³</td>
<td>£30/mm³</td>
<td>£3.0/mm³</td>
<td>25p/mm³</td>
<td>from 25p/mm³</td>
<td>8-25p/mm³</td>
<td></td>
</tr>
</tbody>
</table>
Future Technology

- Ion Implantation at Micron
- N Type Lithium/arsenic/phosphorus implant candidates for P Type Boron doped diamond
- Plasma Trenching/Pillars/3D Monitors
- Silicon development with plasma trenching
- Pixel Imagers with diamond for IMRT/Neutron Gun applications
- Flip chip bump bonding, development with silicon/CERN CLIC
- Passivation would benefit operational reliability and warranty
- Packaging/DDL and Micron Ceramic range in stock
- Ohmic Contacts to diamond/Sputtered Aluminium
- Solderable Ti/Pt/Ag or bondable Ti/Pt/Au
- Underbump metallising for silicon solder ball bumps Al/TiW/Cu
- E Beam multiple crucible permits up to 4 metals in sequence
Packages

- Packages acquired from the BAE/ E6 buy out
- Current Diamond Small Size limits using wide range of silicon UHV Ceramic package designs
- Diamond film on silicon via iridium would permit 4 inch and 6 inch technology
- Use of 6 inch diamond a dream or not?
Teledyne USA market a dosimeter using Micron Silicon detectors
Qualified to K level requiring 125C operation
Military standard
Used on satellites but marketed for airlines where radiation high, medical applications
Diamond detector option will be included

SPACE QUALIFIED DIAMOND DETECTORS
Class H hybrid, is standard Military grade

<table>
<thead>
<tr>
<th>Test Type</th>
<th>Specification</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electrical Tests</td>
<td>Group A Tests at 25°C</td>
<td>100%</td>
</tr>
<tr>
<td>Visual Examination</td>
<td>MIL-STD-750, Method 2073</td>
<td>100%</td>
</tr>
<tr>
<td>Wire Bond Evaluation</td>
<td>MIL-STD-883, Method 2011</td>
<td>10 (0) or</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20 (1) wire (twenty wires, 1 failure)</td>
</tr>
</tbody>
</table>

Micron does item 1 above on all detectors before they are shipped. Hi-Rel will do item 2 above. They do it all the time. Hi-Rel, Teledyne, or Micron can all do item 3. Micron should provide a few electrical rejects from the same metallization run for 10 or 20 wire bond samples. That is all there is for MIL level Element Evaluation.

NOTE: CRaTER, RBSP, MMS, and RPS all require class H hybrids.

Class K is critical Space Level

Dosimeter Element Evaluation for class K starts the same as class H but adds the following eight (8) steps:

NOTE: These are all the same 10 samples.

<table>
<thead>
<tr>
<th>Test Type</th>
<th>Specification</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature Cycling</td>
<td>MIL-STD-883, Method 1010, Condition C</td>
<td>10 (0)</td>
</tr>
<tr>
<td>Mechanical Shock or</td>
<td>MIL-STD-883, Method 2002, B, Y1</td>
<td>10 (0)</td>
</tr>
<tr>
<td>Constant Acceleration</td>
<td>MIL-STD-883, Method 2001, 3000g, Y1</td>
<td>10 (0)</td>
</tr>
<tr>
<td>Interim Electrical</td>
<td>Group A Tests at 25°C</td>
<td>10 (0)</td>
</tr>
<tr>
<td>Burn-in</td>
<td>MIL-STD-883, Method 1015,</td>
<td>10 (0)</td>
</tr>
<tr>
<td></td>
<td>240 Hours, 125°C</td>
<td></td>
</tr>
<tr>
<td>Post Burn-in Electrical</td>
<td>Group A Tests at 25°C</td>
<td>10 (0)</td>
</tr>
<tr>
<td>Steady State Life</td>
<td>MIL-STD-883, Method 1005,</td>
<td>10 (0)</td>
</tr>
<tr>
<td></td>
<td>1000 Hours, 125°C</td>
<td></td>
</tr>
<tr>
<td>Post Life Test Electrical</td>
<td>Group A Tests at 25°C</td>
<td>10 (0)</td>
</tr>
<tr>
<td>SEM Inspection</td>
<td>MIL-STD-883, Method 2018</td>
<td>10 (0)</td>
</tr>
</tbody>
</table>

Micron or Hi-Rel will do item 4. Hi-Rel or Micron can do item 5. All 10 parts must be done by Micron for item 6, 7, 8, 9 and 10. Hi-Rel will do item 11.
Industrial Application Radiotherapy Beams IMRT
(comparison diamond v ion-chamber Dose v Depth)

![Graph showing dose vs depth comparison between Diamond and IC methods](image)

Diamond deviation at 200 mm is +2.2 percentage

Industrial Application Radiotherapy Beams CPT

Charge Particle Radiotherapy High Energy Beams

It is estimated that 15% of all patients treated with conventional radiation would receive a better treatment with CPT.

![Graph showing dose distribution for different particle beams](image)

Tumour depth up to 30cm
- Proton beam 200MeV
- Carbon beam 4800MeV

Can now treat previously In-operable cancers
Due to high accuracy of placement and Low Dose to surrounding tissue
Diamond capable of operating to 1000°C
- Band gap reduces with increasing temperature
- Valence band comes into play
- Hole collection and resolution can improve whilst leakage currents are low
 - Japan 1997 operated Shottky Barrier Diamond at 300°C
- UK 2011, DDL Ohmic Diamond operated at 220°C
 - Schlumberger/JPL/Caltech neutron probe for Mars/Venus requires 500°C at 100 atmospheres
- Micron plan to develop high temperature operating diamond detectors to replace He3 for reactor monitoring but in competition with boron carbide semiconductor where large active areas are available
Ohmic vs Schottky Contacts on Diamond

\[Bv = Mw - Xe \] \hspace{1cm} (n-type) \\
\[Bv = Mw - (Xe + Eg) \] \hspace{1cm} (p-type) \\
\text{Mw :- is metal work function} \\
\text{Xe is the semiconductor electron affinity} \\
\text{Eg is the semiconductor band gap}

For p type if \(Bv \) is positive contact is Ohmic (injecting), if negative contact is Schottky (rectifying). Forming Ohmic contacts on such a wide band gap material is difficult as metals have too low a work function. But with surface modification and increase \(p^+ \) surface concentration (via \(B^+ \) implantation) will allow charge tunnelling to be achieved more easily. Diamond Carbide formation also helps form Ohmic contacts and improves adhesion.

Schottky contacts are less reliable on wide band gap devices. With diamond the surface must be \(H^- \) terminated for Schottky contacts which is less stable than \(O^- \) terminated. Some workers have no problem with this particularly with lower grade material.

Plasma ICP for Diamond Thinning and Damage Removal

\[\text{MFC} \] \\
\[\text{Laser View Port} \] \\
\[\text{Ar} \] \\
\[\text{O}_2 \] \\
\[\text{Ni} \] \\
\[\text{Ji} \] \\
\[\text{VI} \] \\
\[\text{B} \] \\
\[\text{20 mtorr pressure} \] \\
\[\text{2000 watts coil p} \] \\
\[\text{200 watts substr.} \] \\
\[\text{50 sccm Oxygen} \] \\
\[\text{30 sccm Argon fi} \] \\
\text{Diamond substra hard baked resist wafer to reduce s, contamination an with O* radical qu. Back to back rf to particle depositio.}

\[\text{Chamber 40°C} \] \\
\[\text{?-chuck temperature 20°C Helium back side pressure 10 torr} \] \\
\text{Aim is to remove and not to introdu surface rougness.}
Test facility Strontium 90

- Class 5 28.8 years 97 bq
- Collimated delivers Beta electrons
- Lack of gamma ray decays
- Gamma 90 decays
- Beta emits electrons 0.55 MeV / 2.2MeV
- Suitable for all diamond thicknesses to a maximum of 2mm thickness
Diamond Detector Sizes

- Single Crystal 4mm x 4mm
- Polycrystalline Diamond 10mm x 10mm
- Polycrystalline Diamond 15mm x 15mm
- Polycrystalline 20mm x 20mm
- DEVELOPMENT
- 100mm /150nm Diamond Layer 10um-50um
- Diamond on Diamond /Silicon/Iridium
- Polycrystalline Diamond 150mm Ideal
Low Quality Diamond maybe fine for converter applications
Diamond Efficiency is subject to design 5% - 70% feasible
NEW Semiconductor creating interest: Research Universities
BORON CARBIDE SEMICONDUCTOR
5 years to a working device
Hetero Junction on silicon, 40mm x 40mm size
Count rate 600 neutrons/sec/cm² Mobility 50 - 550, not fast
40 um depletion 90% efficiency, 2um 12%,
Band gap 1.5eV to 3.7eV, depending on hydrogen content
Operation to 350°C, retaining low dark current
Low voltage operation 0-10 volts
Excellent neutron signal with spaced 2 MeV energy peaks
Sizes 4cm x cm contacts titanium-silver blocks being built
Devices improve initially with radiation reduce high levels
Applications: Nuclear Forensic/ Nuclear Asset Stewardship
SNS-NGREM Neutron Detector

Data Sheet for Spherical Neutron Detector Type SNS-NGREM

The NGREM detector is designed for use in a portable monitor: its light weight gives it a significant advantage when used in confined spaces or when it is necessary to climb ladders etc while carrying it. Although it does not have the best energy response its low weight makes it the instrument of choice for use in the UK and on UK nuclear submarines. The NGREM has over 3 times the sensitivity of the original Leake design that has been in continuous operation since it was developed at Harwell in 1968. The new design replaces the original cadmium shield by one made of boron loaded polyethylene. The use of MCNP modeling has enabled the diameter of the inner moderator (i.e. that part within the shield) to be increased and the quantity of neutron absorbing material in the shield to be reduced and both of these increases the sensitivity. The original SP9 detector (33 mm outside diameter) has been retained giving an increase in neutron sensitivity of 3.1 times.

Energy Response

The neutron energy response is essentially unchanged from the original design. The design aims to provide a response that is proportional to the Ambient Dose Equivalent H*(10) as defined by ICRP 74. The design overestimates H*(10) in the region around 5 keV by a maximum of 8.3 (compared to 1 MeV) but this is a deliberate compromise between weight and overestimation. The responses at thermal energy (0.025 eV) and 10 MeV are over half (0.53) of that at 1 MeV. In most situations the proportion of ambient D.E. is small in the 5 keV region and so in general the overestimation can be kept below a factor of 2, depending upon the calibration energy used. The calibration factor can be varied to optimize measurements in known spectral fields or can be set to give a fail safe (i.e. overestimate) for unknown spectral situations. Calibration at the UK National Physical Laboratory at 33 keV, 565 keV and 2500 keV shows good agreement with the computed MCNP values.

Sensitivity

The detector responds to neutrons of all energies from 0.025 eV (thermal) to 10 MeV (with a rapidly reducing sensitivity thereafter). The nominal sensitivity at 1 MeV is 2.66 counts per nSv i.e. 0.74 counts per sec per μSv/h.

Polar Response

The spherical geometry of the detector guarantees that an excellent polar response is obtained. There will be a variation in the region of the 3He counter connector but most instruments are designed so that the electronics/ batteries are located in this area.

EMC Response

The EMC response will depend on the electronics used. If used as part of an integral instrument then refer to supplier’s specification. If the detector is to be operated with separate electronics then refer to SNS for details of tests performed.
Cross-section of detector showing (from centre outwards)
1. Space for spherical 3He filled counter
2. Inner polyethylene hemispheres (2 off)
3. Boron loaded polyethylene layer (2 hemispherical shells)
4. Outer polyethylene sphere
Cross-section of detector showing (from centre outwards):
1. Space for spherical He filled counter
2. Inner polyethylene hemispheres (2 off)
3. Boron loaded polyethylene layer (2 hemispherical shells)
4. Outer polyethylene sphere

Leake 1968 with 2.3 bar He-3
Leake et al 2004 with 2.3 bar He-3