

Universität Augsburg Mathematisch-Naturwissenschaftliche Fakultät

Investigation and Manipulation of Dislocations in Heteroepitaxial Diamond-on-Iridium Crystals

C. Stehl, M. Fischer, M. Schreck

Universität Augsburg, Institut für Physik, 86135 Augsburg, GERMANY

Session II: Diamond Characterization

Outline

- Diamond for Radiation and Particle Detectors
- Growth of Heteroepitaxial Diamond Films on Ir/YSZ/Si(001)
- Defects in Crystals
- Dislocations in CVD Diamond
- Detection of Dislocations
- Reduction of Dislocation Density
- Further investigations

Influence of material quality on detector performance

Local variation of sensitivity

→ Electronic activity of crystal lattice defects and impurities (recombination centres)

X-ray response of a homoepitaxial single crystal diamond detector

J. Morse, CARAT Workshop 2009

X-ray response of a polycrystalline diamond detector

Fig. 3. Image of the X-ray sensitivity as measured on a 1=1 mm area in the corner of the electrical contact. Grey scale is logarithmic and given in nA, for a 2.2= 10^8 ph s^{y 1} flux at 5.5 keV.

P. Bergonzo et al., DRM 11 (2002), 418

Influence of material quality on detector performance

Local variation of sensitivity

→ Electronic activity of crystal lattice defects and impurities (recombination centres)

X-ray response of a homoepitaxial single crystal diamond detector

X-ray response of a polycrystalline diamond detector

Fig. 3. Image of the X-ray sensitivity as measured on a 1 = 1 mm area in the corner of the electrical contact. Grey scale is logarithmic and given in nA, for a 2.2= 10^8 ph s^{y 1} flux at 5.5 keV.

P. Bergonzo et al., DRM 11 (2002), 418

Influence of material quality on detector performance

Local variation of sensitivity

→ Electronic activity of crystal lattice defects and impurities (recombination centres)

X-ray respose of a polycrystalline

diamond detector

X-ray response of a homoepitaxial single crystal diamond detector

J. Morse, CARAT Workshop 2009

P. Bergonzo et al., DRM 11 (2002), 418

Method of growth

Microwave enhanced plasma chemical vapour deposition (MWPCVD)

Schematic and photograph of CVD reactor

Substrate

Multi-layer system Ir/YSZ/Si(001) (YSZ = yttria-stabilised zirconia)

- → Good thermal compatibility of diamond and silicon
- \rightarrow Monocrystalline growth of diamond on iridium
- \rightarrow Cost-saving (Ir price!) due to thin film technology

Thermally induced stress due to mismatched thermal expansion coefficients of diamond and substrate

Schematic of diamond/Ir/YSZ/Si multi-layer system

Nucleation

Bias-Enhanced Nucleation (BEN)

- \rightarrow Applicable to 4 inch Ir/YSZ/Si(001) wafers
- → Nucleation density up to 10^{11} cm⁻²

Schematic of BEN set-up

4 inch substrates for BEN process

Heteroepitaxial Diamond Films on Ir/YSZ/Si(001)

Growth

- \rightarrow Formation of defect-rich monocrystalline diamond film
- → Improvement of crystalline quality with film thickness

Schematic: Transition to heteroepitaxial diamond single crystal

SEM images of Dia/Ir/SrTiO₃/Si(001)

Heteroepitaxial Diamond Films on Ir/YSZ/Si(001)

State of the art 10 x 10 mm² flawless detector Large-area growth crystal \rightarrow Step by step towards 30 x 30 mm² HadronPhysics2 20 x 20 mm² neutron monochromator crystals Study of Strongly ("poor" quality) 2274 18 x 18 mm² attempt for detector crystal (medium quality, still many inclusions) 0

MP

11

• State of the art

Detector performance

 \rightarrow Resolution of discrete mixed nuclide α particle energy spectrum

wik

Point defects (0-dimensional) e.g. vacancies and interstitials

C. Kittel: Einführung in die Festkörperphysik, 14th ed. (2006)

Planar defects (2-dimensional) e.g. grain boundaries Line defects (1-dimensional) e.g. dislocations

Bulk defects (3-dimensional) e.g. voids (= clusters of vacancies)

http://www.spaceflight.esa.int/impress/text/education/Glossary/Glossary_G.html

13

• Basics

http://en.wikipedia.org/wiki/Dislocation

• Basics

Classification by Burgers vector **b** and dislocation line direction **I**

Determination of Burgers vector **b** of an edge dislocation

http://de.wikipedia.org/wiki/Versetzung_(Materialwissenschaft)

Dislocation line I (blue) of an edge dislocation

http://en.wikipedia.org/wiki/Dislocation

Edge dislocation:	$\mathbf{b} \perp \mathbf{I}$
Screw dislocation:	b I
Mixed dislocation:	else

Simplest types of dislocations in diamond

Perfect dislocations of the $\{111\}\langle 110\rangle$ slip system

- → Screw dislocation, e.g. $I_s = [1 1 0], b_s = 1/2 [1 1 0]$

- → 60° dislocation, e.g. $I_{60} = [1 1 0], b_{60} = 1/2 [0 1 1]$
 - Edge dislocation, e.g. $I_{e} = [-1 1 2], b_{e} = 1/2 [-1 1 0]$

This is only the tip of the iceberg!

A. Blumenau et al., Defects and Diffusion Forum 226-228 (2004) 11

Threading dislocations

Consequence of growth mechanism of heteroepitaxial diamond films

 \rightarrow Generation of defect bands composed of small angle grain boundaries

Film thickness 0.6 $\mu m,$ grain size 0.3 μm

Film thickness 8 μm, grain size 1 μm

Film thickness 34 µm, no well-defined grains

Film thickness 34 μ m, defect bands highlighted

Plan view TEM images of thin heteroepitaxial CVD diamond films

- → Dislocation lines penetrating the whole diamond film nearly parallel to the growth direction
- → Initially very high dislocation density, comparable to nucleation density (10¹¹ cm⁻²), decreasing with film thickness

C. Kittel: Einführung in die Festkörperphysik, 14th ed. (2006)

Common methods

Values taken from K. Sangwal: Etching of Crystals (1987)

Detection of Dislocations

Etching

Plasma etching of diamond

- \rightarrow Similar to CVD growth process
- → Addition of CO_2 instead of CH_4 in the gas phase
- → Formation of etch-pits at intersection of surface and dislocation line

SEM image of etch-pits in diamond

J. Achard et al., PSS(A) 206 (2009) 1949

Advantages:

- → Compatible with existing CVD reactors
- → Fast
- → Suitable for wide range of dislocation densities

Experimental observations on Dol films

Etch pit distribution on "low-quality" crystals for neutron monochromators

Dark-field optical microscope image

• Experimental observations on Dol films

Etch pit distribution on "low-quality" crystals for neutron monochromators

SEM image

Experimental observations on Dol films

Etch pit distribution on "low-quality" crystals for neutron monochromators

Bi-modal etch-pit distribution:

- \rightarrow Agglomerated dislocation bands from former grain boundaries
- \rightarrow Dispersed dislocations inside former grains

Extracted etch-pit positions

500

• Experimental observations on Dol films

Photoluminescence pattern on "high-quality" crystal for detectors

→ Blue luminescence correlated with dislocations

DiamondView image (UV excitation), courtesy of J. Achard

Experimental observations on Dol films

Photoluminescence pattern on "high-quality" crystal for detectors

→ Blue luminescence correlated with dislocations

Luminescence bands automatically extracted by Watershed Algorithm

 $\rightarrow~$ characteristic length scale ~ 35 μm

Experimental observations on Dol films

Unexpected similarity between "low-quality" monochromator crystals and "high-quality" detector crystals!

Further investigation necessary

- → Cathodoluminescence imaging (information depth!)
- \rightarrow Thickness dependent etch-pit distribution

• Growth of thick layers

A. Romanov et al., PSS(B) 198 (1996) 599

→ Common **1/d dependence** observed for other material systems

Growth of thick layers

Descriptive explanation: Interaction of inclined dislocations during growth

 \rightarrow Annihilation of dislocations with opposite Burgers vectors

→ Reduction of dislocation density by growth of thick layers possible

• Growth of thick layers

Descriptive explanation: Interaction of inclined dislocations during growth

→ Annihilation of dislocations with opposite Burgers vectors

→ Reduction of dislocation density by growth of thick layers possible

• Experimental observations on Dol films

Etch pit density on films of different thickness

Experimental observations on Dol films

Etch pit density on films of different thickness

R.S. Balmer et al.: *Chemical vapour deposition synthetic diamond: material, technology and applications* J. Phys.: Condens. Matter 21 (2009) 364221

- TEM measurements
 - → Dislocation type
 - \rightarrow Dislocation line direction
- Creating larger etch-pit data set
 - \rightarrow Spatial etch-pit distribution at different growth stages
 - \rightarrow Dislocation density reduction and modelling of thickness dependence
- Correlation of etch-pits and Raman/luminescence measurements
- Investigation of etch-pit morphology
- Correlation with detector performance

Etch-pits of different size and shape

Acknowledgements

- GSI
 - E. Berdermann
 - C. Schmidt
 - M. Träger
- Centre National de la Recherche Scientifique
 - J. Achard
- Universität Augsburg
 - S. Gsell
 - A. Sartori
 - M. Weinl
- Funding by the EC

