Investigation and Manipulation of Dislocations in Heteroepitaxial Diamond-on-Iridium Crystals

C. Stehl, M. Fischer, M. Schreck

Universität Augsburg, Institut für Physik, 86135 Augsburg, GERMANY
Outline

- Diamond for Radiation and Particle Detectors
- Growth of Heteroepitaxial Diamond Films on Ir/YSZ/Si(001)
- Defects in Crystals
- Dislocations in CVD Diamond
- Detection of Dislocations
- Reduction of Dislocation Density
- Further investigations
Diamond for Radiation and Particle Detectors

- Influence of material quality on detector performance

 Local variation of sensitivity
 → Electronic activity of crystal lattice defects and impurities (recombination centres)

X-ray response of a homoepitaxial single crystal diamond detector

![Image of X-ray response of a homoepitaxial single crystal diamond detector](image1)

J. Morse, CARAT Workshop 2009

X-ray response of a polycrystalline diamond detector

![Image of X-ray response of a polycrystalline diamond detector](image2)

Fig. 3. Image of the X-ray sensitivity as measured on a 1 x 1 mm area in the corner of the electrical contact. Grey scale is logarithmic and given in nA, for a 2.2 x 10^6 pA s^-1 flux at 5.5 keV.

P. Bergonzo et al., DRM 11 (2002), 418
Diamond for Radiation and Particle Detectors

- Influence of material quality on detector performance

 Local variation of sensitivity

 → Electronic activity of crystal lattice defects and impurities (recombination centres)

X-ray response of a homoepitaxial single crystal diamond detector

→ Homogeneous response

X-ray response of a polycrystalline diamond detector

→ Inhomogeneous response

Fig. 3. Image of the X-ray sensitivity as measured on a 1 x 1 mm area in the corner of the electrical contact. Grey scale is logarithmic and given in nA, for a 2.2 x 10^6 ph s^-1 flux at 5.5 keV.

J. Morse, CARAT Workshop 2009

P. Bergonzo et al., DRM 11 (2002), 418
Diamond for Radiation and Particle Detectors

- **Influence of material quality on detector performance**

 Local variation of sensitivity
 → Electronic activity of crystal lattice defects and impurities (recombination centres)

X-ray response of a homoepitaxial single crystal diamond detector

X-ray response of a polycrystalline diamond detector

→ Possibilities for measuring and influencing the defect concentration?

J. Morse, CARAT Workshop 2009

P. Bergonzo et al., DRM 11 (2002), 418
Heteroepitaxial Diamond Films on Ir/YSZ/Si(001)

- **Method of growth**

 Microwave enhanced plasma chemical vapour deposition (MWPCVD)

Schematic and photograph of CVD reactor
Heteroepitaxial Diamond Films on Ir/YSZ/Si(001)

- **Substrate**

 Multi-layer system Ir/YSZ/Si(001) (YSZ = yttria-stabilised zirconia)
 → Good thermal compatibility of diamond and silicon
 → Monocrystalline growth of diamond on iridium
 → Cost-saving (Ir price!) due to thin film technology

![Schematic of diamond/Ir/YSZ/Si multi-layer system](image)

Thermally induced stress due to mismatched thermal expansion coefficients of diamond and substrate

![Graph showing thermal stress](image)
Heteroepitaxial Diamond Films on Ir/YSZ/Si(001)

- **Nucleation**

 Bias-Enhanced Nucleation (BEN)

 → Applicable to 4 inch Ir/YSZ/Si(001) wafers

 → Nucleation density up to 10^{11} cm$^{-2}$

Schematic of BEN set-up

4 inch substrates for BEN process
Heteroepitaxial Diamond Films on Ir/YSZ/Si(001)

- Growth

→ Formation of defect-rich monocrystalline diamond film
→ Improvement of crystalline quality with film thickness

Schematic: Transition to heteroepitaxial diamond single crystal

SEM images of Dia/Ir/SrTiO$_3$/Si(001)
Heteroepitaxial Diamond Films on Ir/YSZ/Si(001)

- **State of the art**
 - Large-area growth
 - Step by step towards 30 x 30 mm²

10 x 10 mm² flawless detector crystal

20 x 20 mm² neutron monochromator crystals ("poor" quality)

18 x 18 mm² attempt for detector crystal (medium quality, still many inclusions)
State of the art
Detector performance
→ Resolution of discrete mixed nuclide α particle energy spectrum

MIXED NUCLIDE α - SOURCE

CCE\(_{\text{hole-drift}} \approx 93\%\)

δE/E ≈ 1.5 %

E. Berdermann, CARAT-Workshop 2011
Defects in Crystals

Point defects (0-dimensional)
e.g. vacancies and interstitials

Line defects (1-dimensional)
e.g. dislocations

Planar defects (2-dimensional)
e.g. grain boundaries

Bulk defects (3-dimensional)
e.g. voids (= clusters of vacancies)

C. Kittel: Einführung in die Festkörperphysik, 14th ed. (2006)

http://www.spaceflight.esa.int/impress/text/education/Glossary/Glossary_G.html
Dislocations in CVD Diamond

- **Basics**

 Fundamental dislocation types

 Edge dislocation

 Screw dislocation

 Insertion of additional incomplete lattice plane

Dislocations in CVD Diamond

- **Basics**

 Classification by Burgers vector \mathbf{b} and dislocation line direction \mathbf{l}

 Determination of Burgers vector \mathbf{b} of an edge dislocation

 Dislocation line \mathbf{l} (blue) of an edge dislocation

 http://de.wikipedia.org/wiki/Versetzung_(Materialwissenschaft)

 Edge dislocation: $\mathbf{b} \perp \mathbf{l}$
 Screw dislocation: $\mathbf{b} \parallel \mathbf{l}$
 Mixed dislocation: else
Dislocations in CVD Diamond

- Simplest types of dislocations in diamond

Perfect dislocations of the \{111\}\langle110\rangle slip system

- Screw dislocation, e.g. \(\mathbf{l}_s = [1 -1 0], \mathbf{b}_s = \frac{1}{2} [1 -1 0] \)
- \(60^\circ\) dislocation, e.g. \(\mathbf{l}_{60} = [1 -1 0], \mathbf{b}_{60} = \frac{1}{2} [0 -1 1] \)
- Edge dislocation, e.g. \(\mathbf{l}_e = [-1 -1 2], \mathbf{b}_e = \frac{1}{2} [-1 1 0] \)

This is only the tip of the iceberg!

A. Blumenau et al., Defects and Diffusion Forum 226-228 (2004) 11
Dislocations in CVD Diamond

- **Threading dislocations**

 Consequence of growth mechanism of heteroepitaxial diamond films
 → Generation of defect bands composed of small angle grain boundaries

Plan view TEM images of thin heteroepitaxial CVD diamond films

→ Dislocation lines penetrating the whole diamond film nearly parallel to the growth direction

→ Initially very high dislocation density, comparable to nucleation density (10^{11} \text{ cm}^{-2}), decreasing with film thickness

C. Kittel: Einführung in die Festkörperphysik, 14th ed. (2006)
Detection of Dislocations

- Common methods

X-ray topography
- M. Gaukroger et al., DRM 17 (2008) 262

TEM
- A. Blumenau et al., Defects and Diffusion, Forum 226-228 (2004) 11

Dislocation density (cm\(^{-2}\))

<table>
<thead>
<tr>
<th>Density (cm(^{-2}))</th>
<th>0</th>
<th>(10^5)</th>
<th>(10^{10})</th>
<th>(10^{13})</th>
</tr>
</thead>
<tbody>
<tr>
<td>X-ray topography</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TEM</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Etching</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Values taken from K. Sangwal: Etching of Crystals (1987)
Detection of Dislocations

- **Etching**

 Plasma etching of diamond

 → Similar to CVD growth process

 → Addition of CO_2 instead of CH_4 in the gas phase

 → Formation of **etch-pits** at intersection of surface and dislocation line

Advantages:

→ Compatible with existing CVD reactors
→ Fast
→ Suitable for wide range of dislocation densities

J. Achard et al., PSS(A) 206 (2009) 1949
Detection of Dislocations

- Experimental observations on DoI films

 Etch pit distribution on “low-quality” crystals for neutron monochromators

[Image of a dark-field optical microscope image showing preferential orientation of dislocation bands]
Detection of Dislocations

- Experimental observations on DOI films

Etch pit distribution on “low-quality” crystals for neutron monochromators

SEM image
Detection of Dislocations

- Experimental observations on DoI films

Etch pit distribution on “low-quality” crystals for neutron monochromators

Bi-modal etch-pit distribution:
- Agglomerated dislocation bands from former grain boundaries
- Dispersed dislocations inside former grains

Extracted etch-pit positions
Detection of Dislocations

- Experimental observations on DoI films

 Photoluminescence pattern on “high-quality” crystal for detectors
 → **Blue luminescence correlated with dislocations**

![DiamondView image (UV excitation), courtesy of J. Achard](image)
Detection of Dislocations

- Experimental observations on DOI films

 Photoluminescence pattern on “high-quality” crystal for detectors
 → **Blue luminescence correlated with dislocations**

Luminescence bands automatically extracted by Watershed Algorithm
→ characteristic **length scale ~ 35 µm**
Detection of Dislocations

- Experimental observations on DOI films
 Unexpected similarity between “low-quality” monochromator crystals and “high-quality” detector crystals!

Further investigation necessary
 → Cathodoluminescence imaging (information depth!)
 → Thickness dependent etch-pit distribution
Reduction of Dislocation Density

- Growth of thick layers

Dislocation density vs. film thickness for different heteroepitaxial material systems

→ Common 1/d dependence observed for other material systems

A. Romanov et al., PSS(B) 198 (1996) 599
Reduction of Dislocation Density

- Growth of thick layers

 Descriptive explanation:
 Interaction of inclined dislocations during growth
 → Annihilation of dislocations with opposite Burgers vectors

→ Reduction of dislocation density by growth of thick layers possible
Reduction of Dislocation Density

- Growth of thick layers

 Descriptive explanation:
 Interaction of inclined dislocations during growth
 → Annihilation of dislocations with opposite Burgers vectors

→ Reduction of dislocation density by growth of thick layers possible

→ Mathematical modelling yields experimental 1/d dependence
Reduction of Dislocation Density

- Experimental observations on DoI films

 Etch pit density on films of different thickness

$$\propto d^{-0.6}$$

→ Behaviour closer to $\frac{1}{\sqrt{d}}$ than $\frac{1}{d}$
Reduction of Dislocation Density

- Experimental observations on DOI films

Etch pit density on films of different thickness

$\propto d^{-0.5}$

$\propto d^{-1}$

→ Two distinct regions with different behaviours?
Reduction of Dislocation Density

- Dislocation density spectrum of diamond materials

Y. Shvyd'ko et al., Nature Photonics 5, 539 (2011)

Dislocation density (cm$^{-2}$) 104 106 108 109 1011

Further investigations

- TEM measurements
 → Dislocation type
 → Dislocation line direction

- Creating larger etch-pit data set
 → Spatial etch-pit distribution at different growth stages
 → Dislocation density reduction and modelling of thickness dependence

- Correlation of etch-pits and Raman/luminescence measurements

- Investigation of etch-pit morphology

- Correlation with detector performance

Etch-pits of different size and shape
Acknowledgements

- GSI
 - E. Berdermann
 - C. Schmidt
 - M. Träger
- Centre National de la Recherche Scientifique
 - J. Achard
- Universität Augsburg
 - S. Gsell
 - A. Sartori
 - M. Weinl
- Funding by the EC