Development of Front–End Electronics for Beam Condition Monitor at CMS

Dominik Przyborowski on behalf of the CMS Beam Radiation Monitoring Group

Department of Physics and Applied Computer Science AGH University of Science and Technology

December 18, 2012

Outline

- 2 Specification
- 3 Architecture
- ④ Simulation results
- 6 Calibration Circuit
- 6 Layout and PCB

Motivation present system

Both peaking time and pulse duration not sufficient for 25 ns beam operation

MIP signal

Specification

The Design Goals

- BCM1F system will be used for luminosity and beam background measurements
- \bullet Expected luminosity between LHC long shutdowns >150 $^1/_{fb}$ - rad-hard design needed
- 2 5 pF detector capacitance range
- ullet $\sim \,$ 15 fC linearity range
- \sim 50 mV/fC of charge gain
- ${\rm \circ}~{\rm Equivalent}$ Noise Charge $< 1 {\rm ke^-}$
- Quasi–Gaussian shaping with $T_{\rm P}$ and FWHM < 10 ns
- Fast baseline recovery after overdrive detector signal
- Default polarity of the detector electron signal.
- Hi-performance output buffer needed 100 Ω & 10pF load

Architecture

Schematic diagram of FE channel

Architecture Front-End specification

Preamplifier

- IBM CMOS8RF 130nm technology
- 2.5 V power supply (high voltage enabled design)
- ullet 85 dB of DC gain with \sim 80 o phase margin
- \sim 1.6 GHz GBP (2.4 GHZ w/o comp.)
- $m \circ \sim 7.5~mS$ input transistor $m g_m$
- ${\sim}350~\mu{
 m A}$ current consumption (${\sim}$ 870 $\mu{
 m W}$)

Output buffer

- Class AB Push-Pull operation
- ullet \sim 9mA output current capability (ltd by safety diodes)

< 🗇 > < 🖻 > -

- ullet \sim 10 mW of power consumption
- \sim 240 MHz GBP

Simulation results Linearity

Linearity and Gain

Simulation results Time response

Front-End response on MIP signal

Simulation results Time response

Distinguishability of MIPs with 12.5 ns interval

Simulation results Time response

Front-End response on large signals

Simulation results FE parameters dependency to detector capacitance

Simulation results FE parameters dependency to detector capacitance

The PSRR at high frequencies degraded to about -10 dB due to use of safety clamping diodes (should not be a problem for a system with a few number of channels)

Calibration Circuit

Specification

- common calibration pulse for all channels
- 2 levels of charge (1 bit for selection)
- Differential driver (LVDS) for Strobe signal

Layout and PCB

Chip floorplan – 5.6 \times 2 mm²

(日) (同) (日) (日)

э

Layout and PCB Concept for the Upgrade

- Carbon fiber carriage,
- C-Shaped PCB to hold BCM1F diamonds & amplifiers & BCM1L diamond modules.
- Laser diodes on carriage arm (Radius 120 mm)
- Planning new cabling for up to 12 1F "diamonds"/quadrant + 2 1L diamonds.

Conclusion

Colnclusion

- The FEE are done on schematic level layout in progress (submission in 19.02.2013)
- Use of 2.5 V supply for FEE core allows to meet the specification in terms of $\rm T_{\rm P}$ (9 ns) and FWHM (7 ns)
- Frontend meets the specification: ENC <800 e⁻, ${\rm K_q}$ ~57 mV/fC, input range \sim 15 fC (10 fC linear)

Acknowledgements

```
• CERN PH:
```

- Vladimir Ryjov and Anne Dabrowski
- DESY:

Wolfgang Lohmann and Wolfgang Lange

Conclusion

Colnclusion

- The FEE are done on schematic level layout in progress (submission in 19.02.2013)
- Use of 2.5 V supply for FEE core allows to meet the specification in terms of $\rm T_{\rm P}$ (9 ns) and FWHM (7 ns)
- Frontend meets the specification: ENC <800 e⁻, $\rm K_q\sim\!57~mV/fC,$ input range \sim 15 fC (10 fC linear)

Acknowledgements

• CERN PH:

Vladimir Ryjov and Anne Dabrowski

• DESY:

Wolfgang Lohmann and Wolfgang Lange