Development of Front–End Electronics for Beam Condition Monitor at CMS

Dominik Przyborowski on behalf of the CMS Beam Radiation Monitoring Group

Department of Physics and Applied Computer Science
AGH University of Science and Technology

December 18, 2012
Outline

1 Motivation
2 Specification
3 Architecture
4 Simulation results
5 Calibration Circuit
6 Layout and PCB
7 Conclusion
Motivation

Events statistics

Both peaking time and pulse duration not sufficient for 25 ns beam operation

MIP signal

Overdrive signal
The Design Goals

- BCM1F system will be used for luminosity and beam background measurements
- Expected luminosity between LHC long shutdowns $> 150 \text{ fb}^{-1}$ – rad-hard design needed
- 2 – 5 pF detector capacitance range
- $\sim 15 \text{ fC}$ linearity range
- $\sim 50 \text{ mV/fC}$ of charge gain
- Equivalent Noise Charge $< 1 \text{ke}^-$
- Quasi-Gaussian shaping with T_p and FWHM $< 10 \text{ ns}$
- Fast baseline recovery after overdrive detector signal
- Default polarity of the detector – electron signal.
- Hi-performance output buffer needed – 100 Ω & 10pF load
Architecture

Schematic diagram of FE channel

- Preampilier
- Shaper
- Amplifier and single-to-differential converter with output buffer
- Linear Laser Driver
Preamplifier

- IBM CMOS8RF 130nm technology
- 2.5 V power supply (high voltage enabled design)
- 85 dB of DC gain with \(~ 80^\circ\) phase margin
- \(~ 1.6 \text{ GHz} \) GBP (2.4 GHZ w/o comp.)
- \(~ 7.5 \text{ mS} \) input transistor \(g_m\)
- \(~ 350 \mu A \) current consumption (\(~ 870 \mu W\))

Output buffer

- Class AB Push–Pull operation
- \(~ 9\text{mA} \) output current capability (ltd by safety diodes)
- \(~ 10 \text{ mW} \) of power consumption
- \(~ 240 \text{ MHz} \) GBP
Simulation results

Linearity

Linearity and Gain

Charge gain \((C_{\text{det}} = 5\text{pF}) = 57.4 \text{ mV/fC}\)
Simulation results
Time response

Front–End response on MIP signal

Peaking Time = 9.2 (ns)
FWHM = 7.1 (ns)
Simulation results
Time response

Distinguishability of MIPs with 12.5 ns interval

Output Voltage (mV) vs Time (ns)
Simulation results

Time response

Front-End response on large signals

- $Q_{in} = 30$ (fC)
- $Q_{in} = 100$ (fC)
- $Q_{in} = 250$ (fC)
- $Q_{in} = 500$ (fC)
Simulation results
FE parameters dependency to detector capacitance

Peaking time variation

FWHM variation
Simulation results
FE parameters dependency to detector capacitance

Equivalent Noise Charge

ENC Slope = 69.5 \((\text{e}^-/\text{pF}) \)

Power Supply Rejection Ratio

The PSRR at high frequencies degraded to about -10 dB due to use of safety clamping diodes (should not be a problem for a system with a few number of channels)
Simplified Scheme

BandGap Reference

\[V_{\text{high}} \]

\[V_{\text{low}} \]

\[C_{\text{test}} \]

Select

LVDS

Strobe

Specification

- common calibration pulse for all channels
- 2 levels of charge (1 bit for selection)
- Differential driver (LVDS) for Strobe signal
Chip floorplan – 5.6 × 2 mm²
Layout and PCB
Concept for the Upgrade

- Carbon fiber carriage,
- C-Shaped PCB to hold BCM1F diamonds & amplifiers & BCM1L diamond modules.
- Laser diodes on carriage arm (Radius 120 mm)
- Planning new cabling for up to 12 1F "diamonds"/quadrant + 2 1L diamonds.
Conclusion

The FEE are done on schematic level – layout in progress (submission in 19.02.2013)

Use of 2.5 V supply for FEE core allows to meet the specification in terms of T_P (9 ns) and FWHM (7 ns)

Frontend meets the specification: ENC <800 e$^-$, $K_q \sim 57$ mV/fC, input range ~ 15 fC (10 fC – linear)

Acknowledgements

CERN PH:
Vladimir Ryjov and Anne Dabrowski

DESY:
Wolfgang Lohmann and Wolfgang Lange
Conclusion

- The FEE are done on schematic level – layout in progress (submission in 19.02.2013)
- Use of 2.5 V supply for FEE core allows to meet the specification in terms of T_P (9 ns) and FWHM (7 ns)
- Frontend meets the specification: $\text{ENC} < 800 \text{ e}^-$, $K_q \sim 57 \text{ mV/fC}$, input range $\sim 15 \text{ fC}$ (10 fC – linear)

Acknowledgements

- CERN PH:
 Vladimir Ryjov and Anne Dabrowski
- DESY:
 Wolfgang Lohmann and Wolfgang Lange