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Outline
• Applications of diamond in radiation environments.

• The diamond as a sensor: advantages and limits.

• Background: from the CCE to the comparison between scCVD and 
pCVD.

• Radiation hardness respect to:

• γ-rays 

• Electrons.

• Neutrons.

• Protons.

• Summary.

Review  of existing data on diamond radiation hardness in 
different operative conditions in view to develop a model of 
radiation damage in diamond. 

• Pions.

• Alphas.

• MeV energy ions.

Motivation
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Applications of diamond in radiation 

environments

Diamond application is currently foreseen in many fields from fundamental to high energy 
physics experiments and dosimetry:

•Tracking detectors:

• Strip and pixel detectors to reconstruct particle track with high spatial and energy 
resolution.

• A full diamond pixel module has been built for the ATLAS experiment.

•Beam Condition Monitors (BCM) [1]:

• To avoid detectors damage from beam instabilities, beam condition monitoring 
detectors should abort safely and quickly the beam.

• Diamond has been selected for BCM at Babar, Belle, CDF, ATLAS and CMS.

•Fission reactor flux monitors [2]:

• To detect neutron emitted from reactor plasmas, operating at temperatures above 
ambient temperature.

• Diamond sensors are developed for the International Tokamak Experimental 
Reactor (ITER).

[1] Wallny et al., NIM A, 2007, Status of diamond detectors and their high energy physics application.
[2] Angelone et al., NIM A, 2008, Development of single crystal diamond neutron detectors and test at JEK tokamak.
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Diamond as a sensor
• Advantages:

• Large band-gap:

⇒ Low intrinsic charge carrier density, high resistiv ity: low leakage current.

• Low dielectric constant ( ≈1/2 of Si and GaAs):

⇒ Low capacitance: low noise.

• High breakdown field:

⇒ Operation at high voltages: fast charge collection.

• High mobility:

⇒ Fast charge collection.

• Large thermal conductivity:

⇒ Operation without cooling.

• High binding energy:

⇒ Radiation hardness.

• Limits:

• High energy required to create an electron-hole pai r:

⇒ Low signal.

• High density of defects:

⇒ Charge trapping and recombination: unable to collec t all the produced ionization signal.

⇒ Polarization effect.
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Background

• Parameters characterizing  performances:

• Charge Collection Efficiency (CCE):

• Charge Collection Distance (CCD):

• Short-time radiation effects (especially for pCVD):

• Priming or pumping: increase of the CCE (CCD) during the 
irradiation with ionising particles due to the filling of vacant trap 
sites (passivation) [3]:

• Polarization effects: building of a non uniform

electric field due to the localized filling of the traps.
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• Rp: priming ratio; D0: priming dose.

[3] Oh et al., DRM, 2000, Neutron irradiation studies with detector grade CVD diamond.
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Background

• Properties vs. depth:

• pCVD pristine material [4]:

• Irradiating the sample [3]:
The introduction of radiation induced defects will change the CCE

more in regions with initially lower defect concentration: the mean

<CCE> decreases and the CCE distribution after irradiation is

narrower.
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[4] RD42 collaboration, CERN EP, 1998, Development of 
CVD diamond radiation detectors.
[3] Oh et al., DRM, 2000, Neutron irradiations studies with 
detector grade CVD diamond. • Model [4] prediction.

• εQ=CCE.
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Background

• scCVD and pCVD – Results of the RD42 collaboration

• Radiation hardness with respect to 24GeV/c proton irradiation:
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• k≈10-18 cm
• scCVD shifted by 3.8x10 15cm -2
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γ-rays

• Motivations:

• Low-angle detectors for TESLA linear accelerator project [6]: 
detector at 1.2 cm from the beam line, dose of as much as 1 
MGy per year.

• Materials and methods:

• pCVD diamond from DeBeers, with Ti-Pt-Au contacts.

• Irradiations: 10 keV photon beam and 60Co source (1.17 and 
1.33 MeV).

• CCD and TSC measurements before and after radiation 
(primed samples, voltage for maximum carrier velocity).

• Measurement of the TSC peak and of the CCD respect to the 
non irradiated samples.

[5] Behnke et al., NIM A, 2002, Electromagnetic radiation hardness of diamond detectors.
[6] Behnke et al., R. Settles (Eds.), 2001, TESLA technical design report, Part IV: A detector for TESLA.



R. Mori, M. Bruzzi
ADAMAS, 16-18 December 2012, GSI

10 keV γ-rays on pCVD

[5] Behnke et al., NIM A, 2002, Electromagnetic radiation hardness of diamond detectors.

• Results: TSC and CCD

• TSC peak increase with the bias accordingly to the increasing mobility.

• No effect of the irradiation on the TSC: same conce ntration of induced 
defects.

• No degradation of the CCD for any energy and dose.

• No radiation damage problem in diamond for applicat ions like TESLA.
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Electrons

• Motivations:

• At the International Linear Collider (ILC), the innermost calorimeter, 
the BeamCal, is hit by a huge amount of electron-positron pairs. 
Sensors are interspersed between the absorber planes to obtain 
information about the collision and provide a feedback for the 
steering.

• The Total Ionizing Dose (TID) can accumulate to several 
MGy/year: radiation hardness is mandatory.

• Materials and methods:

• pCVD diamonds from two manufacturers with Ti-Pt-Au contacts.

• Irradiation with 10 MeV electrons up to a TID of several MGy (S-
DALINAC, Darmstadt) and comparison with 4 GeV hadrons (PS, 
CERN) .

• Measurement of the CCD before and after irradiation.

• Comparison with silicon detector (3-5 kΩcm resistivity).

[14] Grah et al., IEEE TNS, 2009, Polycristalline CVD diamonds for the beam calorimeter of the ILC.
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10 MeV electrons on pCVD

• Results: CCD and I-V

• Initial pumping, then CCD  down to a level comparab le with the initial 
unpumped state.

• The current is still in the order of few pA after i rradiation, thus is uncritical for  
operations as a detector. (In the Si detector it in creases up to more than 6 uA.)

• The silicon detector is much less radiation hard.

[14] Grah et al., IEEE TNS, 2009, Polycristalline CVD diamonds for the beam calorimeter of the ILC.

silicon
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Neutrons

• Motivations:

• Test  radiation hardness and predict the radiation induced 
damage with a model.

• Materials and methods:

• pCVD diamond compared to Si.

• Neutrons from 10 keV to 20 MeV up to 1.6x1016 n/cm2.

• Measurement of the leakage current in time during the 
exposure and of the CCD after irradiation. Measurement of 
the maximum CCE in the primed state.

• CCE vs. fluence empirical model [3]:
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• rn: ratio of the CCE loss due to the linear part to the total.
• αn1, αn2: damage constants.

[3] Oh et al., DRM, 2000, Neutron irradiation studies with detector grade CVD diamond.
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1 MeV neutrons on pCVD

• Results:

• 1 MeV neutrons deactivate high temperature electric ally active defects.

• This corresponds to have faster dynamics in dosimet ry (see M. Bruzzi 
talk).

[7] Bruzzi et al., DRM, 2001, Electrical properties and defect analysis of neutron irradiated undoped CVD diamond films.
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Spallation neutrons on pCVD

• Results ( from 10 keV to 10 MeV peaked at 5 MeV)

• In diamond, very low and stable leakage current ( ≈300 pA) correlated to the 
neutron (or γ-background) flux. In silicon, the current increase s (up to ≈10 uA) 
due to radiation induced defects creation.

• The CCD of diamond slightly decrease before 10 15 n/cm 2.

[4] RD42, CERN EP, 1998, Development of CVD diamond radiation detectors.



CCE CCD

R. Mori, M. Bruzzi
ADAMAS, 16-18 December 2012, GSI

5 MeV neutrons on pCVD

• Results:    CCE resistivity

• CCE decrease (as modelled) due to increasing defect  concentration. 
Resistivity decreases because defects increases the  free carrier
concentration (but not a severe problem: >5x10 11 Ωcm!!!).

• Samples behave differently: explained by different defects introduction rate.

• [3] model also priming,  introduction rate, depth d ependence.
[3] Oh et al., DRM, 2000, Neutron irradiation studies with detector grade CVD diamond.
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20 MeV neutrons on pCVD

• Results: ionization signal

• The signal decrease of 50% after (1.25 ±±±±0.25)x1015 n/cm 2.

• Twofold exponential decay (see [9]).

[8] de Boer et al., PSS, 2007, Radiation hardness of diamond and silicon sensors compared.
[9] Muller, Diploma thesis, 2006, University of Karlsruhe.
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Protons

• Motivations:

• Test the radiation hardness for  LHC experiments.

• Compare diamond with silicon performance with respect 
to proton irradiation.

• Materials and methods:

• pCVD diamond samples with Cr-Au contacts and scCVD 
with Au contacts.

• Irradiation with protons with 500 MeV kinetic energy 
(TRIUMF, Canada), 24 GeV/c momentum (PS, CERN), 
26 MeV, 2.6 MeV (40 um penetration depth), up to 
18x1015 p/cm2.

• Measurement of charge signal distribution, CCD and of  
particle-induced current during irradiation. IBIC (Ion 
Beam Induced Charge) on scCVD to measure the CCE 
with 2.6 MeV protons.
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24 GeV/c protons on pCVD

• Results: CCD and current for 24 GeV/c protons

• Diamond is radiation hard up to 2x10 15 p/cm 2.

• Particle-induced current in diamond doesn’t change in time.

• The OFF-spill current in diamond is negligible, whi le in silicon 
increases over 100 uA indicating  radiation damage.

[10] RD42, NIM A, 1999, Proton irradiation of CVD diamond detectors for high-luminosity experiments at 
the LHC.
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24 GeV/c protons on pCVD

• Results: signal distribution for 24 GeV/c protons

• MPV decrease of 20% only at 5x10 15 p/cm 2. Exponential decay of the signal with 
irradiation. “Radiation lifetime” is 12.5x10 15 p/cm 2.

• Pumping effect for 0.9x10 15 p/cm 2, radiation damage dominate over 3x10 15 p/cm 2.

• The pulse height distribution agree with a model [1 2] accounting for the pumping 
and the radiation damage.

[11] RD42, NIM A, 2000, Pulse height distribution and radiation tolerance of CVD diamond detectors.
[12] Adam et al., NIM A, 2006, Radiation hard diamond sensors for future tracking applications.
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26 MeV protons on pCVD

• Results: 26 MeV protons

• Signal decrease more rapidly respect to higher ener getic 
protons and neutrons.

[8] de Boer et al., PSS, 2007, Radiation hardness of diamond and silicon sensors compared.
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2.6 MeV protons on scCVD

• Results: 2.6 MeV protons

• Reduction of 50% of the CCE already at 10 13 p/cm 2.

• 2.6 MeV protons (Bragg peak at about 40 um) leave l ocalized 
damage which influence the CCE, by trapping  charge s and 
reducing the field strength in the undamaged materi al for 
polarization effects.

[13] Lohstroh et al., PSS, 2008, Ion beam induced charge (IBIC) irradiation damage study in synthetic single 
crystal diamond using 2.6 MeV protons.

CCE map 
after 
irradiation 
of the 
areas A-F
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Pions

• Motivations:

• Study the radiation hardness for the LHC.

• Materials and methods:

• pCVD diamonds with Cr-Au contacts.

• Irradiation with 300 MeV/c pions  (correspondingly to the peak 
of the pion-nucleon cross section) up to 1.7x1015 π/cm2.

• Measurement of the particle-induced current and CCD.

• Comparison with silicon detector.

[4] RD42, CERN EP, 1998, Development of CVD diamond radiation detectors.
[15] Bauer et al., NIM A, 1996, Recent results from the RD42 diamond detector 
collaboration.
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300 MeV/c pions on pCVD

• Results:

• Diamond doesn’t show increase of the leakage curren t after irradiation.

• Pumping effect for low fluences.

• Detector performances unchanged up to 1.7x10 15 π/cm2.

[4] RD42, CERN EP, 1998, Development of CVD diamond radiation detectors.
[15] Bauer et al., NIM A, 1996, Recent results from the RD42 diamond detector collaboration.
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Alphas

• Motivations:

• Study of the radiation hardness.

• Materials and methods:

• pCVD diamonds with Cr-Au contacts.

• Irradiation with 5 MeV alpha particles (12 um penetration 
depth) up to 2x1015 α/cm2.

• Measurement of the CCD by means of surface photo-induced 
conductivity measurements.

[15] Bauer et al., NIM A, 1996, Recent results from the RD42 diamond detector collaboration.
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5 MeV alphas on pCVD

• Results:

• 20% CCD decrease after only 2x10 13 α/cm2.

[15] Bauer et al., NIM A, 1996, Recent results from the RD42 diamond detector 
collaboration.
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MeV-energy ions

• Motivations:

• At high energy hadron colliders, secondary interactions produce a 
significant fraction of particles in this range.

• Reducing the range result in an increase of defect concentration, 
which is no longer homogeneous.

• The radiation hardness cannot be simply extrapolated from the 
higher energy range.

• Materials and methods:

• scCVD diamonds with diamond-like carbon film plus Pt-Au contacts 
and silicon PIN diode.

• Carbon ions as damaging particles (avoid the implantation of 
foreign atoms).

• Microprobe single ion technique IBIC (Ion Beam Induced Charge) 
to measure the CCE.

[16] Zamboni et al., DRM, 2012, Radiation hardness of single crystal CVD diamond detector tested with 
MeV energy ions.
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MeV energy ions on scCVD

• Results: hole and electron CCE

• The detector energy resolution increase with the ap plied bias.

• Hole CCE deteriorate faster due to the more efficie nt hole trapping by 
carbon ion produced stable defects or less efficien t electron trapping due 
to additionally produced donor centers.

[16] Zamboni et al., DRM, 2012, Radiation hardness of single crystal CVD diamond detector tested with 
MeV energy ions.

holeselectrons
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MeV energy ions on scCVD

• Results: comparison with silicon

• Same energy: over the entire carbon fluence range, silicon CCE is higher 
than diamond CCE.

• Same loss rate: higher CCE deterioration rate for s ilicon but still better than 
diamond.

[16] Zamboni et al., DRM, 2012, Radiation hardness of single crystal CVD diamond detector tested with 
MeV energy ions.

equal 
range

shorter 
range

deeper 
range

same damaging energy same loss rate
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MeV energy ions on scCVD

• Irradiation with C ions produce more hole traps or donor centers, as 
suggested by the higher hole CCE deterioration.

• Radiation at MeV energies produce higher defect concentration in a 
small volume, decreasing  local lifetime by increasing trapping 
probability. It influences the overall CCE more respect to an 
homogeneous irradiation.

• For 6.5 MeV C ions, the simulations give four times more vacancies 
in silicon than in diamond, but  results show lower radiation 
hardness of diamond: 

• Much higher mobility and recombination of defects in silicon at 
RT that reduce the net concentration.

• Stronger influence of polarization effects in damaged regions of
diamond.

[16] Zamboni et al., DRM, 2012, Radiation hardness of single crystal CVD diamond detector tested with 
MeV energy ions.
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Summary

• Diamond is currently planned for fundamental and high energy physics experiments as a 
tracking detector, beam condition monitor, fission reactor flux monitor, etc..

• It should withstand an high radiation environment maintaining its unique properties such 
as fast response, collection efficiency, energy resolution. Radiation hardness is a 
fundamental property.

• In the last 15 years, diamond radiation damage has been tested with γ-rays, neutrons, 
protons, electrons, pions, alphas and low energetic ions.

• Results show diamond is radiation hard up to several MGy of photons and electrons, up to 
1015 (neutrons and high energetic protons)/cm2 and  >1015 pions /cm2. In such conditions, 
leakage current remains negligible and CCD decreases only slightly. 

• Apart for low energetic ions, silicon detectors appear to be much less radiation hard than 
diamond in terms of CCE.

• Radiation damage in diamond is more significant for low energetic protons, neutrons, 
alphas and MeV ions.

• Most of the studies are for pCVD due to historical reasons, more tests on scCVD are 
required!

• A  model on radiation hardness should account for different particles and energy (NIEL) . 

• More systematic studies on radiation induced defects and simulations are required to get 
to it. Thank you for your attention!!!
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Spares

• Properties of the scCVD vs. thickness.

• Modeling of the CCD with pumping effect.

• MeV energy ions: penetration.

• NIEL damage cross section.

• Particles damage on silicon.
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Properties of the scCVD vs. thickness

• Properties vs. thickness:

[12] Adam et al., NIM A, 2006, Radiation hard diamond sensors for future tracking applications.
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Modeling of the CCD with pumping effect 

[11] RD42, NIM A, 2000, Pulse height distribution and radiation tolerance of CVD diamond detectors.
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• δ: fraction of the traps which can be passivated.
• γ: passivation constant.
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MeV energy ions: penetration

[16] Zamboni et al., DRM, 2012, Radiation hardness of single crystal CVD diamond detector tested with 
MeV energy ions.

Linear energy transfer
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NIEL damage cross section

[8] de Boer et al., PSS, 2007, Radiation hardness of diamond and silicon sensors compared.

The NonIonizing Energy Loss (NIEL) express the rate of energy loss due to atomic displacement 
as a particle transverses the material.
The Kinetic Energy Released in MAtter (KERMA) is expressed by:
KERMA (keV)=NIEL(keV*cm2/gm)* φ(cm-2)*mass(gm).
Here it is shown the Displacement damage cross section (in Si 100 MeVmb=2.144 keV*cm2/gm).
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Particles damage on silicon

10 MeV protons           24 GeV/c protons           1 MeV neutrons

Initial distribution of vacancies in  (1µµµµm)3 after 1014 particles/cm2

[17] Huhtinen, NIM A, 2002.


