

Diamonds for Beam Loss monitoring of LIPAc

ADAMAS – GSI, December 18th 2012

CEA Saclay:

DSM/Irfu: P. Abbon, J. Egberts, J.F. Denis, A. Marchix, *J. Marroncle DRT/List:* M. Pomorski

ADAMAS: Advanced Diamond Assemblies

IFMIF, LIPAc: a brief introduction

CVD diamonds purpose

Diamonds as µLoM*?

- Cryogenic ability
- counting rates evaluation
- electronics

Summary

^{*}µLoM: micro Losses Monitor

IFMIF

(International Fusion Materials Irradiation Facility)

International agreement of the "**Broader Approach**" (Japan + Europe in Feb. 2007) = IFMIF + IFERC + JT60-SA

IFMIF^{*} : to test materials submitted to very high neutron fluxes for future **Fusion** Reactors.

LIPAc

(Linear IFMIF Prototype Accelerator)

LEBT / MEBT / HEBT = Low / Medium / High Energy Beam Transport RFQ = Radio Frequency Quadruple

Beam tuning challenge

Very challenging machine

- highest beam power
- highest space charge

Space Charge \rightarrow difficulties for beam tuning (superconductive cavities) \Rightarrow original proposition:

- ightarrow not optimizing the beam core
- ightarrow but, minimizing the beam halo

\Rightarrow CVD diamonds for beam halo measurement

ACCT + DCCT SEM Grids (1m from slits) **D-Plate** IPM deuteron beam: $E_{max} = 9 MeV$ 2 Slits (Emittance) I = 125 mA P_{max} = 1.125 MW Duty Cycle: <10⁻⁴ to cw RF: 175 MHz (5.7 ns) 2 BPMs (capacitive) FFC RGBLM 1 BPM (Stripline) FPM Emittance meter FC ~ 25 BLoMs for the whole end-accelerator Species fraction measurement ACCT ACCT + FCT ACCT SEM Grids IPM 4 Profilers **3 x 8 μLoM** (CCD camera) 4 grids analyser 9 MeV 5 MeV 2 BPM 3 BPM 100 keV 4 BPM (capacitive) 8 BPM (cryo) 1 Slit (E.spread) FPM

LIPAc

Dec 18, 2012

ADAMAS - Diamonds for LIPAc – JM

Diamond as µLoM

Ideal micro losses monitor:

- \rightarrow sensitive to neutrons, less to X-rays and γ produced by sc cavities
- \rightarrow reasonable counting rates in \approx minute (for pulsed beam)
- ightarrow ability to work at 4.5K
- ightarrow very good reliability (no possibility of dismounting) and radiation hardness
- → compromise: single crystalline CVD diamond (Chemical Vapor Deposit)

Objective: 3 diamonds/ensemble (8 × [cavity + solenoid + BPM^{*}])

- \rightarrow improve reliability
- \rightarrow better transverse localization

Feasibility study:

- \rightarrow cryogenic temperatures
- \rightarrow simulation for 1W/m losses
- \rightarrow electronics

*BPM: Beam Position Monitor

Cryogenic temperature ability?

2010 : nothing was found in literature about diamond at cryogenic temperature

- Test at 77 K (LN₂) → Saclay, December 2010
 - ²⁵²Cf: "neutrons" and γ mono CVD: 4×4×0.5 mm³
 - \Rightarrow good agreement with simulation

- Test at 4.5 K (LHe) → Saclay, May 2011
 - $^{252}\text{Cf:}$ "neutrons" and γ

 \Rightarrow good agreement with simulation

Results show diamond ability to work at cryogenic temperature

Feasibility study: counting rates

Rate versus the electronic threshold (keV) for neutron & γ (calculated for 1W/m beam energy losses)

ΔE neutron spectrum in diamond

Simulation I	MCNPX,	A. Marchix	(Oct. 2011 ₎)

Threshold	γ+n			
	Continuous beam	pulsed beam: 1 ms/s		
keV	kHz	counts/mn		
100	4.3	258		
200	2.7	162		
300	2.1	126		

diamond: $-4 \times 4 \times 0.5 \text{ mm}^2$ $-3 \times 3 \times 0.5 \text{ mm}^2$ (active size)

Vault background → negligible versus 1 W/m loss contribution

IFMIF

Experimental counting rates validation

Neutron tests made with a Van de Graaff (CEA Bruyères-le-Châtel):

E_n = 0.2, 0.6, 0.75, 1.2, 2.1, 3.65, 6, 16 MeV Goal: diamond response (energy deposit...), counting rates... but, at room temperature

neutron/ γ discrimination \rightarrow time of flight

Conclusion

Threshold is \approx 100 keV, but short cable

Simulation fits quite well data

 \Rightarrow more confidence in previous counting rates.

Front-End Electronics (FEE)

FEE located in 2 places

- Diamond + cable ~ 6 m length
- Fast amplifier in the accelerator vault
 - \rightarrow BW ~ 1 GHz
 - \rightarrow Gain > 40 dB
- Cable ~ 20 m length
- FEE in the RF bay area
 - \rightarrow amplifier
 - \rightarrow 2 solutions
 - counting rates for 3 thresholds
 - signal integration to reconstruct the energy deposited in diamond (CAEN 1720 → tbt beginning 2013)

Fast amplifiers

⁶⁰Co source tests

Diamond + cable ~ 6 m length

Fast amplifier in the accelerator vault

ightarrow BW \sim 2 GHz

 \rightarrow Gain > 40 dB

Fast amplifier in the accelerator vault

- \rightarrow amplifier
- \rightarrow 2 solutions
 - counting rates for 3 thresholds
 - signal integration to reconstruct the energy deposited in diamond (CAEN 1720 \rightarrow tbt beginning 2013)

Cividec 40dB ("Vault") + Ampli (ZFL500)

→ elec. noise \approx -300 mV → ⁶⁰Co (threshold = 350 mV)

ADAMAS - Diamonds for LIPAc – JM

Summary & Perspectives

CVD diamonds look promising for LIPAc beam monitoring, tuning

- good neutron and $\boldsymbol{\gamma}$ sensitivity
- cryogenic temperatures
- quite good radiation hardness
- reasonable counting rates

but,

- expensive (diamonds & electronics)
- diamond behavior in superconductive cavity vicinity (X-rays)?
 - → test foreseen in January 2013 at Saclay on superconductive cavity of Spiral2

Next year

- Energy deposit calibration in diamond
- FFE design completion by may 2013 (amplifiers + daq)
- Faraday boxes for diamond implementation in the cryostat (Rf shielding, noise)

Thank you very much to

CEA Saclay:

DSM/Irfu: P. Abbon, J. Egberts, J.F. Denis, A. Marchix **DRT/List:** M. Pomorski

the organizers,

and, for your attention.

Backups

Diamond signal

 ρ =3.52 g/cm³ Resistivity~10¹³ and 10¹⁶ Ω.cm $ε_r \sim 5.7$ HV ~ 1 V/µm Pair e/hole ~ 13.2 eV $E_{gap} = 5.4$ eV

Q=10⁻⁶ x 2.5 10⁻⁹ = 2.5 fC

Pair production for MIP: PDB (MIP) \rightarrow dE=1.7 MeV/(g/cm²) 0.5mm thickness $\rightarrow \Delta E=300 \text{ keV}$ $\rightarrow 22000 \text{ e}^{-}/\text{h pairs}$ $\rightarrow 44 \text{ e}^{-}/\text{h pairs per }\mu\text{m}$

Rk: find 33!

Events occuring close to the positive electrode (electron signal is negligible)

```
hole signal
(rise time = few ps & fall time = 200ps)
```


Events occuring close to the negative electrode (hole signal is negligible) electron signal (rise time = few ps & fall time = 200ps)

Note: other events are close to these extreme cases. For 1 interaction, we assume 18000 e/h pairs.

Radiation background counting rates

Radiation background using old simulations from UNED (Madrid 2008)

No data at the SRF Linac, 1 m downstream

Threshold (keV)	Neutron rates (kHz)		γ rates (kHz)		γ+n (kHz)	1 \//m
plan number	1	2	1	2	1	T ^/////
100	0.9	1.9	0.13	0.26	1.0	4.3
200	0.5	1.2	0.10	0.21	0.6	2.7
300	0.4	0.9	0.08	0.17	0.5	2.1

Rate versus the electronic threshold (keV) for neutron & y background compared to 1W/m

Remark:

- plan2 / plan $1 \approx 2 \Rightarrow$ plan 1 > background rate inside the SRF Linac
- Background should be stable while beam losses >> 1 W/m, particularly during commissioning!

Preliminary conclusion: counting rates seems to be reasonable.

^{IFMIF} 252Cf source & neutron cross sections

²⁵²Cf source

decays

- 96.9% $\rightarrow \alpha$ (giving ²⁴⁸Cm with 340 kyear of ½ life <E_n>≈1.42 MeV with 3.7 n/fission)
- 3.1 % → spontaneous fission

1/2 life : 2.645 years

Old radioactive source implies less fission processes \rightarrow more γ will be produce from other processes

Simulation with ⁶⁰Co source

⁶⁰Cf source simulated response

