

Diamond as potential CryoBLM for the LHC All results are preliminary

With Marcin Bartosik, Bernd Dehning, Mariusz Sapinski and acknowledgments

- Motivation
- Room temperature irradiation
 - First results
- Cold Irradiation
- LHC detectors installation
- Conclusions and outlook

LHC Beam Loss Monitoring

- **Purpose**: damage and quench protection of sensitive elements (magnets and collimators)
- Method: measurement of secondary shower particles from beam losses
- **Detectors**: Ionisation chambers, Secondary Emission Monitors and Diamonds
- Fastest active machine protection system

BLM Ionisation chamber

Problem: in triplet magnets signal from debris with similar height as simulated beam losses in steady state case

Cryogenic BLM as solution

- Future BLMs placed closer to:
 - where losses happen and
 - the element needing protection (so inside cold mass of the magnet, 1.9 K)
- Measured dose then better corresponds to dose inside the coil

Signal from LHC Diamond BLM

Low intensity beam Setup 2012

In liquid helium

At room temperature

Semiconductors:

Silicon p⁺-n-n⁺ with 300 µm thickness and single crystal chemical vapor deposition (CVD) Diamond with 500 µm thickness

LHe chamber

3.9 cm active length

With Erich Griesmayer and Christina Weiss

Allowed to understand detector properties. Results in 2013...

Main open question: Radiation hardness of semiconductors at 1.9 K?

Room temperature irradiation

- 24 GeV/c protons from PS
- 400 ms spill duration
- 1.5·10¹¹ protons/cm²/spill
- **30°C** at detector placement (Sauna conditions for Silicon material)
- Measurement procedure:
 - DC measurements of Silicon and Diamond in parallel from beam particles with Keithley 6517
 - Offline integration of the charge

→ DC and RT: Unfavorable conditions for Silicon

Room temperature irradiation Setup picture

10 k Ω cm **Silicon** p⁺-n-n⁺, 300 μ m and

Single crystal CVD **Diamond** 500 µm

First spills higher signal from Silicon, but situation changed quickly...

Room temperature irradiation results

Double log

More comparisons to come

linear

ADAMAS December 2012

11

Voltage scans

RT Irradiation voltage scan - preliminary

No full CCE even at high bias

Si leakage

Si 100 V

Fast increase of leakage current due to temperature and irradiation: • Before irradiation: 40 nA at 100 V

- After irradiation: 48 µA at 100 V

Leakage current

7 orders of magnitude larger leakage for Si compared to Diamond

Cold Irradiation

- In cold Silicon leakage should go down to pA, even for highly irradiated samples
- DC measurements in cold are therefore a valid comparison between Si and Diamond
- In addition to DC, laser TCT for Si at certain fluencies
 - Irradiation ended yesterday morning at a total fluency of 1.3·10¹⁶ protons/cm² (Silicon IV shows 1 mA at 100 V at 25°C, while sCVD is still below 100 pA at 500 V)

Installation in radiation zone

Limited space, heavy material, 30°C, radioactive zone, protection cloths → Sauna conditions for human material

Final irradiation setup

Helium transfer and recuperation line

Continuous monitoring of beam properties, temperature, helium level and pressure

Feedthroughs for:15 Optical fibers21 Electrical cables

Inside cryostat - detectors

UT85 Stainless steel cables for low heat introduction

Liquid helium chamber

Si devices from V. Eremin

Telescope

Different resistivity Silicon with laser TCT

Remarks and observations

- Fascinating opportunity to observe Diamond and Silicon in parallel at different fluencies and different temperatures
- Silicon leakage below 100 pA at liquid helium temperatures and even under high irradiation
- Stable operation of Diamond, comparable damage constant at RT and liquid helium
 - Damage constant of Si larger than of sCVD, but much smaller difference than at RT
- Much more still to come...

First cryogenic LHC detectors on cold mass of the magnet

Technical drawing Thierry Renaglia

Installation of 2 Silicon and 2 Diamond detectors in Q7R3 at 1.9 K. Magnet will be exchanged during long shut down 1.

Further placement planed in DS L3 during LS1.

LHC detectors in Q7R3

Conclusion

- Advantage of Diamond at RT for DC measurements obvious
- Further analysis and comparisons will allow conclusions for CryoBLM
- First LHC detectors will allow:
 - Detector performance test
 - Long term stability study
 - Unprecedented LHC loss insight

Co-authors/Acknowledgements Thank you!!!

- Thomas Eisel and Carlos Arregui with CERN Cryogenic team,
- Vladimir Eremin and Jaakko Haerkoenen with RD39,
- Erich Griesmayer with CIVIDEC electronics,
- Christina Weiss
- Maurice Glaser, Federico Ravotti and Lau Gatignon,
 - **Colleagues from BE-BI**,
 - Vittorio Parma, Thierry Renaglia and Michel Souchet
 - Elisa Guillermain and optical fibre team