A pCVD diamond detector for a slowed down ion beam in high energy laser environment

TECHNISCHE UNIVERSITÄT DARMSTADT

1st ADAMAS Workshop - December 18th 2012 - Alexander Knetsch

Outline

- 1. Scientific Motivation
 - Energy loss measurements in new velocity regime
- 2. Challenges
 - Low ion beam energy: Polarization
 - Wide spread ion beam
 - Energy resolution
 - X-ray saturation
- 3. Solutions
- 4. Results

Motivation

time

- We detect particle bunches, no single particles
 - At least several hundred ions each 9.24 ns or 27.6 ns
 - Each ion has an energy of 3.6 MeV/u
- High radiation hardness :
 - A few thousand ions per bunch.
- High time resolution :
 - Micro bunch duration 2-3 ns
 - Time resolution has to be significantly below 1 ns
- Fast detector :
 - Micro bunch frequency 9.24 ns or 27.6 ns
 - High repetition rate, time constant of few ns
- + Possible use at room temperature (low noise) <u>CVD diamond detectors are ideal for our experiments</u>

Overview of our CVD diamond detectors

Newest Experiment

Stopping power for T=200eV $n_e = 10^{21} cm^{-3}$

 Stopping power theories show vast discrepancies in the region of maximum stopping power (v_{ion} = v_{th})

- Detector needs
 △E<200keV.
- Ion beam needs to be slowed down.

Experimental setup

TECHNISCHE UNIVERSITÄT DARMSTADT

- 45 m C-foil slowes down and scatters ion beam.
- Phelix and Nhelix Laser Pulse.
- Laser parameters:
 - t=7ns, E=30J
 - Phelix: 527nm Nhelix: 532nm

Plasma parameters:

• T=200eV $n_e = 10^{21} \text{ cm}^{-3}$

Challenge: Wide spread ion beam

Scintillator in front of detector w/o decelerating foil

Scintillator in front of detector with decelerating foil

Relatively small amount of detectable ions

Challenge: Energy resolution

Broadening of bunches give maximum distance for detector (△E<60keV) ■ 70 cm @ 108MHz ■ 4 m @ 36MHz

Higher time of flight leads to better energy resolution

lons lose up to 10% of their energy in the plasma. \rightarrow a distance of 50cm is possible

Challenge: High energy lasers environment

Saturation times due to

- Direct x-ray exposure from plasma
- Indirect exposure by EMP

Maximum saturation time: 50 ns

Challenge: polarisation

2-6 \mu m penetration depth

→Carriers are generated at the diamond surface

→Risk of polarisation

Interdigitated electrode structure

Idea:

An interdigitated electrode structure could be a fast detector for near-surface electron-hole pairs

 \rightarrow less polarisation effects

→ Smaller Capacitance gives smaller time constants

Draft of electron and hole trajectories in diamond

Problem with interdigitated structure

1. Time of signal depends strongly on location of carrier generation

2. Without trapping carriers create a 2nd signal.

 \rightarrow Not applicable for our experiments.

Thin large area detector

TECHNISCHE UNIVERSITÄT DARMSTADT

Measures against saturation

Protection from direct X-rays:

Thin goldfoil (1.2 μm)

Protection from EMP:

- Entire detector in Faraday cage.
- Shielded cables with no sight to plasma or ion beam.

Results

Results

Saturation time below TOF of lons: 50ns.

Detector showed its functionality and will be used in future experiments. Current data are beeing analyzed

Thank you for your attention and merry christmas.

Thanks to...

- Michael Träger
- Elèni Berdermann
- Bettina Lommel
- Witold Cayzac
- Bernd Zumbach
- Alexnader Frank
- Plasma physics Group

