Diamond detector for a portable α -particle spectrometer $\succ 1^{st}$ ADAMAS workshop \prec

GSI Darmstadt, 16th-18st-December-2012

Jose Dueñas¹, Alejandro Martín² & Julián de la Torre²

Dpto. Física Aplicada Universidad de ¹Huelva & ²Extremadura

Jose Dueñas (jose.duenas@dfa.uhu.es)

DD for α spectroscopy

Outline

Motivation.

- Identification of alpha-particle emitting nuclides.
- A portable alpha spectrometer
- ② Diamonds for Nuclear Spectroscopy.
 - Thin sample of $50\mu m$.
 - Energy resolution.
- Ontinuous Air Monitoring Detector form CANBERRA
 - Si detector with special entrance window.
 - Designed for working in harsh environment.
- Omparison between detectors
 - Working in air
 - and with incident light.

Motivation

The need

- Illegal transport of radioactive material is becoming a problem.
- Rapid methods to identify possible radioactive materials are needed.
- Rather difficult to achieve for alpha particle due to its short range.

What's in the market

- No-portable stations, auxiliary equipment, some need a NIM crate.
- Main manufactures: ORTEC & CANBERRA.
- Quite costly piece of equipment.

Requirements

- Relatively small dimensions and weight.
- Able to work in air and with light background.
- Low energy consumption.

Single crystal Diamond Detector (Sc-DD)

Sc-DD 50 μ m properties

- \triangleright Type: Single crystal \triangleright Thickness: 50 μ m \triangleright Size: 4.5mm \times 4.5mm
- **Contact**: DLC/Pt/Al (3/16/200 nm) **Capacitance**: 24 pF (GSI)
- Energy resolution 29 keV (at GSI) for 50 V bias.
- Manufactured by Diamond Detector LTD (2011)

Continuous Air Monitoring Detector form CANBERRA

CAM properties

MODEL	CAM450
Active Area (mm ²)	450
Junction Area (mm ²)*	531
Active Diameter (mm)	23.9
Thickness (min/max)	120/325 µm
Bias (min/max)	+10/90 V
Bias (typical)	+24/70 V
Si-Resistivity (min)	3000 Ohm • cm
Operation Temp. (min/max)	-30/+50 °C
Storage Temp. (max)	+100 °C
Alpha Resolution at 15-24 V (FWHM – in keV)	38
Alpha Resolution at 70 V K (FWHM – in keV) .⊑	34
Alpha Background (counts/day)	
Beta Resolution at 70 V (FWHM)	17
Beta Threshold at 70 V	51

5/9

Leakage current with incident light

Sc-DD Leakage current measurement

- Measurements with light on/off.
- $\bullet\,$ at 20 $^\circ C$ and 55 % RH.
- Keithly 6517B Electrometer.
- Light has minimum effect on leakage current.

• CAM specs from Canberra.

-

Energy resolution in air

Exposing detectors to room light

• Spectra taken at Extremadura (left) and Huelva (right) Universities.

- α -source distance 1 cm. Bias: 24 V (CAM), 50 V (Sc-DD).
- Both detectors are able to detect the alpha emissions in air.

Energy resolution in air

CAM vs Sc-DD

Table: Energy resolution (keV).

	CAM	Sc-DD
Vacuum	130	70
Air	299	120

- Both detectors plugged in to the same electronic chain.
- Total exposure time 10 minutes.

- ₹ 🖬 🕨

Conclusion & future work

Conclusions

- Thin diamond detector can definitely be used for α & β ID.
- Don't need special entrance window (work in open air with light).
- Harsh environments are not an issue.
- Main drawback may be the size, which will affect the absolute efficiency (greater area gets more hits).

Future work

- Increase the size using a "good" thin Pc-DD (Ø 25 mm).
- Design a proper housing for this application.
- Integrate the electronics as much as possible.

< ロ > < 同 > < 回 > < 回 >